# ARPES studies of Dirac materials

Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

### Topics

- Graphene
- Topological crystalline insulators
- Weyl Semimetals
- Dirac Semimetals

#### Dirac equation

- Dirac equation in 2 dimensions:  $H_D = c\boldsymbol{\sigma} \cdot \boldsymbol{p} + mc^2 \sigma_z$   $\boldsymbol{\sigma} = (\sigma_x, \sigma_y)$
- In condensed matter context, c is replaced by  $v_F$
- Massless version: linear quasiparticle dispersion
- Massive version: electrons and holes have same mass

#### Many examples of Dirac materials

#### $H_D = c\boldsymbol{\sigma} \cdot \boldsymbol{p} + mc^2 \sigma_z$

| Material                                                          | Pseudo-spin          | Energy scale                | References        |
|-------------------------------------------------------------------|----------------------|-----------------------------|-------------------|
| Graphene, silicene, germanene                                     | Sublattice           | 1 - 3  eV                   | [5,6,17,19,36,37] |
| Artificial graphenes                                              | Sublattice           | $10^{-8} - 0.1 \mathrm{eV}$ | [28,29,38-40]     |
| Hexagonal layered heterostructures                                | Emergent             | $0.01 - 0.1 \mathrm{eV}$    | [41–47]           |
| Hofstadter butterfly systems                                      | Emergent             | 0.01 eV                     | [46]              |
| Graphene-hBN heterostructures in high magnetic fields             | -                    |                             |                   |
| Band inversion interfaces: SnTe/PbTe, CdTe/HgTe, PbTe             | Spin-orbit ang. mom. | 0.3 eV                      | [48–50]           |
| 2D topological insulators: HgTe/CdTe, InAs/GaSb, Bi               | Spin-orbit ang. mom. | <0.1 eV                     | [7,8,22,24,51,52] |
| bilayer,                                                          |                      |                             |                   |
| 3D topological insulators: $Bi_{1-x}Sb_x$ , $Bi_2Se_3$ , strained | Spin-orbit ang. mom. | $\lesssim 0.3  \text{eV}$   | [7,8,23,52–55]    |
| HgTe, Heusler alloys,                                             |                      |                             |                   |
| Topological crystalline insulators: SnTe, $Pb_{1-x}Sn_xSe$        | Orbital              | $\lesssim 0.3 \mathrm{eV}$  | [56–59]           |
| <i>d</i> -wave cuprate superconductors                            | Nambu pseudo-spin    | $\lesssim 0.05 \mathrm{eV}$ | [60,61]           |
| <sup>3</sup> He                                                   | Nambu pseudo-spin    | 0.3 µeV                     | [2,3]             |
| 3D Weyl and Dirac SM                                              | Energy bands         | Unclear                     | [32–34]           |
| Cd <sub>3</sub> As <sub>2</sub> , Na <sub>3</sub> Bi              |                      |                             |                   |

T. O. Wehling et al. Adv. Phys. 63 1-76 (2014)

#### Graphene



Tight binding Hamiltonian with only NN hopping:

$$\widehat{H} = -t \sum_{\langle i,j \rangle} a_i^{\dagger} b_j + a_j^{\dagger} b_i$$

2x2 matrix in momentum space representation:

$$H(\boldsymbol{k}) = \begin{pmatrix} 0 & \xi(\boldsymbol{q}) \\ \xi^*(\boldsymbol{q}) & 0 \end{pmatrix}$$

Energy bands:  $\epsilon(\mathbf{k}) = \pm |\xi(\mathbf{k})|$  where  $\xi(\mathbf{k}) = -t(e^{i\delta_1 \cdot \mathbf{k}} + e^{i\delta_2 \cdot \mathbf{k}} + e^{i\delta_3 \cdot \mathbf{k}})$ At K and K', bands degenerate,  $\xi(\mathbf{k}) = 0$ ; use to solve for  $\delta_{1,2,3}$ Expansion in vicinity of  $\pm K$ 

A. H. C. Neto *et al.* Rev. Mod.

Phys. **81** 109 (2009)

# Ingredients for Dirac fermions in graphene

- Destructive interference of three partial hopping amplitudes at ξ(k = K)
  →Sublattice symmetry or inversion symmetry
- Time-reversal symmetry (in absence of magnetic field)

# Preparation of graphene for surface spectroscopies



Hidino *et al* NTT Technical review (2010) Produces multiple nominally decoupled layers  MBE or CVD growth on substrate (Si, Ge, SiC)



Dabrowski et al, arXiv:1604.02315v1

#### ARPES on isolated graphene



Bostwick *et al,* Nat. Phys. **3** 36 (2007)

- Extra bands (right) from misoriented layers
- Band dispersion is linear over at least 600 meV



Sprinkle et al, PRL 103, 226803 (2009)



#### ARPES on not-so-isolated graphene



Zhou et al. Nat. Mater. 6 770 (2007)



 Mass appears in dispersion because of sublattice symmetry breaking due to substrate

$$H_D = c\boldsymbol{\sigma} \cdot \boldsymbol{p} + mc^2 \sigma_z$$
$$\boldsymbol{\sigma} = (\sigma_x, \sigma_y)$$

Total of 36 ways to turn graphene massive (Ryu et al, PRB 80, 205319 (2009))

#### ARPES on graphene summary

- Difficult to prepare samples, but when samples are made ARPES spectra agree well with theory
  - Dirac points at BZ corners
  - Dispersion linear over huge energy range
  - Breaking sublattice symmetry opens a gap
- Common areas of study
  - Coupling of Dirac fermions to phonons and plasmons
  - Inducing superconductivity by intercalating or doping group I or II atoms (e.g. CaC<sub>6</sub>)

### Topics

- Graphene
- Topological crystalline insulators (TCIs)
- Weyl Semimetals
- Dirac Semimetals

### Review: 3D topological insulators



3D Tis:

- Odd number of Dirac cones per BZ (often just one)
- Dirac point protected by TRS

TCIs

- Even number of dirac cones
- Dirac point protected by mirror symmetry

Chen et al. Science 325 July 2009

#### TCI: SnTe

#### 110 mirror plane а hv = 21.2 eVE, Binding energy (eV) Intensity (arb. units) 0.1 0.2 0.3 Λ, Wave vector 0.6 0.4 0.2 E Binding energy (eV) f Binding energy (eV) Wavevector 0.1 0.1 0.2 0.2 -0.3 Wave vector 0.3 0.4 -X-X $\Lambda_1$ Ā, Wave vector Wave vector



- Prediction of this class of materials: Fu, PRL **106** 106802 (2011)
- Prediction that SnTe is TCI: Hsieh et al, Nat. Comm. 3 982 (2012) (right)
- First ARPES observation: Tanaka et al. Nat. Phys. 8 800 (2012) (left)

# Band inversion in $Pb_{1-x}Sn_xTe$ can be tuned by doping or temperature



• Band inversion: first ingredient for topological surface state



 Topological phase transition tuned by temperature!

Dziawa et al Nat. Mater. 11 1023 (2012)

### Topics

- Graphene
- Topological crystalline insulators (TCIs)
- Weyl Semimetals
- Dirac Semimetals

Historically, Dirac Semimetals were discovered first, but they are more easily understood in the context of Weyl semimetals

### What is a Weyl semimetal?

- Weyl equation: relativistic wave equation for massless spin ½ particles
- Like 3D graphene in bulk except 'weyl nodes' come in pairs of opposite chirality
- Weyl nodes are protected
- Weyl nodes looks like pseudo-magnetic monopoles in momentum space
- Unusual surface states ('Fermi arcs', no relation to Fermi arcs in cuprates)



Image source: https://en.wikipedia.org/wiki/Weyl\_semimetal



## Weyl semimetals: overview

- Low energy dispersion for 3D chiral dirac system:  $H_{\pm} = \pm \hbar v_F (k_x \sigma_x + k_y \sigma_y + k_z \sigma_z)$
- Hamiltonian above uses all three pauli matrices, so there is no 2x2 matrix left over to anticommute with H and open gap
- Velocity is either parallel or opposite to chirality set by pseudospin:  $v = \pm hv_F \sigma$
- Energy spectrum around band crossing points:  $E = \hbar v_F |\mathbf{k}|$
- Weyl points are mathematically like magnetic monopoles (except magnetic field → Berry curvature)
  - Integral around one Weyl node:  $\pm 2\pi$
  - Integral over entire BZ: 0
  - Weyl points always come in pairs with opposite chirality
  - The only way to destroy Weyl points is to merge two with opposite chirality
  - Requires broken time reversal or inversion symmetry
- Fermi arcs connect projection of pair of Weyl points to surface





## TaAs: first WSM?

- 24 bulk Weyl cones, including 4 pairs with chiral charge  $\pm 2$
- Weyl nodes are separated because of boken inversion symmetry
- First observe Fermi arcs, then connect to bulk Weyl nodes



Xu *et al.* Science **349** 613 (2015)

#### Demonstrating Fermi arcs in TaAs



- Objective: prove that horseshoeshaped FS is two Fermi arcs, not one weirdly shaped pocket
- Note: a competing paper on this topic came out at the same time (Lv et al PRX 5, 031013 (2015))

Xu *et al.* Science **349** 613 (2015)

#### Co-propagating surface states



Xu *et al.* Science **349** 613 (2015)

How would panel F look if 'horseshoe' feature was a closed pocket?

### Bulk Weyl nodes in TaAs

Expectation for spin-integrated ARPES?:

- Band dispersion:
  Dirac cones at specific planes in k-space
- Fermi surface
  Points at specific planes, circles away from these planes





Xu *et al.* Science **349** 613 (2015)

### Summary: Evidence that TaAs is WSM

- Theory
- Surface states which are consistent with disconnected Fermi arcs, as opposed to closed pockets
- 3D Dirac dispersions in bulk which project onto termination of surface arcs
- Followup work (not discussed today) showing spin texture of surface state: Xu *et al* PRL 116, 096801 (2016)

#### Dirac semimetals

• Non-chiral 3D graphene

• 
$$H = \hbar v_F \begin{pmatrix} \boldsymbol{\sigma} \cdot \boldsymbol{k} & 0 \\ 0 & -\boldsymbol{\sigma} \cdot \boldsymbol{k} \end{pmatrix}$$

- This Dirac point is not generally robust against perturbations
- In some specific crystal structures, 3D Dirac point can be protected by certain crystal symmetries

#### Na<sub>3</sub>Bi: a Dirac semimetal



Dirac dispersion and pointlike Fermi surface at certain kz

Liu *et al.* Science **343** 864 (2014)

#### Na<sub>3</sub>Bi: a Dirac semimetal



- Dispersion is linear if you slice through Dirac point, but hyperbolic if you miss it
- 3D dirac cone is anisotropic

Liu et al. Science **343** 864 (2014)

### Cd<sub>3</sub>As<sub>2</sub>: another Dirac Semimetal



Liu et al, Nat. Mater. 13 677 (2014)

#### Summary: 3D Dirac systems



T. O. Wehling *et al.* Adv. Phys. **63** 1-76 (2014)

# Conclusion: many examples of Dirac materials

| Material                                                                                   | Pseudo-spin          | Energy scale                | References        |   |
|--------------------------------------------------------------------------------------------|----------------------|-----------------------------|-------------------|---|
| Graphene, silicene, germanene                                                              | Sublattice           | $1 - 3 \mathrm{eV}$         | [5,6,17,19,36,37] |   |
| Artificial graphenes                                                                       | Sublattice           | $10^{-8} - 0.1 \mathrm{eV}$ | [28,29,38-40]     |   |
| Hexagonal layered heterostructures                                                         | Emergent             | $0.01 - 0.1 \mathrm{eV}$    | [41-47]           |   |
| Hofstadter butterfly systems                                                               | Emergent             | 0.01 eV                     | [46]              |   |
| Graphene-hBN heterostructures in high magnetic fields                                      | C                    |                             |                   |   |
| Band inversion interfaces: SnTe/PbTe, CdTe/HgTe, PbTe                                      | Spin-orbit ang. mom. | 0.3 eV                      | [48-50]           |   |
| 2D topological insulators: HgTe/CdTe, InAs/GaSb, Bi                                        | Spin–orbit ang. mom. | <0.1 eV                     | [7,8,22,24,51,52] | V |
| 3D topological insulators: $Bi_{1-x}Sb_x$ , $Bi_2Se_3$ , strained<br>HgTe, Heusler alloys, | Spin-orbit ang. mom. | $\lesssim 0.3  eV$          | [7,8,23,52–55]    |   |
| Topological crystalline insulators: SnTe, $Pb_{1-x}Sn_xSe$                                 | Orbital              | $\leq 0.3 \mathrm{eV}$      | [56-59]           |   |
| <i>d</i> -wave cuprate superconductors                                                     | Nambu pseudo-spin    | $\approx 0.05  \mathrm{eV}$ | [60.61]           |   |
| <sup>3</sup> He                                                                            | Nambu pseudo-spin    | $\widetilde{0.3}\mu eV$     | [2,3]             |   |
| 3D Weyl and Dirac SM<br>Cd <sub>3</sub> As <sub>2</sub> , Na <sub>3</sub> Bi               | Energy bands         | Unclear                     | [32–34]           |   |



#### **Contributions from ARPES**

- Unravel complex 3D Fermiology in multiband materials
- Observe surface states

#### Resources

- T.O. Wehling *et al.* "Dirac Materials" *Advances in Physics*, **63** p1-76 (2014) <u>http://www.tandfonline.com/doi/abs/10.1080/000</u> <u>18732.2014.927109</u>
- Contemporary Concepts of Condensed Matter Science, Volume 6, Pages 1-324 (2013) Topological Insulators, Chapters 1,2, 11 <a href="http://www.sciencedirect.com/science/bookseries/15720934/6/supp/C">http://www.sciencedirect.com/science/bookseries/ 15720934/6/supp/C</a>