Iron-based superconductors

With a focus on ARPES studies thereof

Inna Vishik

Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Outline

- Introduction
 - Discovery
 - Materials and phase diagrams
 - Correlations
 - Potential mechanisms
- ARPES studies of FeSCs
 - Fermiology
 - Magnetism/SDW
 - Superconducting gap
 - Monolayer FeSe on STO

Discovery of Fe-based SCs

Discovery of Fe-based SCs

Wang et al. Europhys. Lett. 83 67006 (2008)

What is high T_c ?

- T_c>77K (boiling point of liquid nitrogen)
- T_c>30K (former BCS "limit")
- T_c large relative to Fermi energy
- Mechanism unknown (not BCS)

Image source: https://en.wikipedia.org/wiki/Hightemperature_superconductivity

A second family of high-T_c materials!!

- High-T_c is not unique to one material class
- Benefit of hindsight
- Better tools

- 6hrs per trace
- One momentum at a time

~2008

- ~10 mins per cut
- Many momenta at a time, along 1D trajectory in k-space

(A small selection of) Fe-SC phase diagrams

Comments on phase diagrams

- Electron, hole, and isovalent doping produces superconductivity
- Most materials can be tuned through entire phase diagram
- Proximity of antiferromagnetism and superconductivity
- AFM often is preceded by structural phase transition

Are Fe-SCs correlated electron systems?

How does one assess if a material is a strongly correlated electron system?

- Specific heat (large m*)
- ARPES (strong renormalization of band relative to LDA)
- U/W
- High-temperature transport (larger resistivity \rightarrow more types of scattering)
- Optics (Drude weight depletion)

No

- Small renormalization relative to LDA in some materials
- On-site coulomb repulsion (U) smaller than bandwidth (W) (Yang *et al*, **80**, 014508 (2009))

Yes

- Some materials have large band renormalization
- Optical drude weight depletion consistent with cuprates and other correlated systems
- Bad metal conductivity at high temperature
- Some systems show orbital-selective Mott

Si *et al,* Nat. Rev. Mater. **1** 1 (2016)

Fe-SC Brillouin zone

BaFe₂As₂ (122)

- 1-Fe unit cell (ignore As/Se)
- 2-Fe unit cell (consider larger unit cell due to Fe/Se)
- Multiple Fermi surfaces: momentum-resolved tool is very useful!

Kordyuk, Low Temp Phys, 38, 888 (2012)

Potential mechanisms of superconductivity in iron-based superconductors

- Spin-fluctuation-mediated *interband* pairing with s_{\pm} superconducting order parameter
- Fluctuations around nematic quantum critical point
- Orbital fluctuations
- Others

Potential gap symmetries

Chubukov and Hirschfeld, Phys. Today 68, 46 (2015)

ARPES review

$$E_{kin} = hv - \phi - |E_{B}|$$

$$p_{\parallel} = \hbar \mathbf{k}_{\parallel} = \sqrt{2mE_{kin}} \cdot \sin \vartheta$$

$$I(\mathbf{k}, \omega) = I_{0}(\mathbf{k}, v, \mathbf{A}) f(\omega) A(\mathbf{k}, \omega) \otimes R(\Delta k, \Delta \omega)$$
Fermi-dirac Instrument resolution

$$|M_{f,i}^{k}|^{2} \equiv |\langle \phi_{f}^{k}| - \frac{e}{mc}A \cdot p|\phi_{i}^{k} \rangle|^{2}$$
Single-particle spectral function: band structure + interactions

$$|M_{f,i}^{k}|^{2} \equiv |\langle \phi_{f}^{k}| - \frac{e}{mc}A \cdot p|\phi_{i}^{k} \rangle|^{2}$$
Single-particle spectral function: band structure + interactions

$$A(\mathbf{k}, \omega) = -\frac{1}{\pi} \frac{\sum^{n} (\mathbf{k}, \omega)}{[\omega - \varepsilon_{n} - \sum^{n} (\mathbf{k}, \omega)]^{2} + (\sum^{n} (\mathbf{k}, \omega))^{2}}$$

D. H. Lu, et al. Nature 455 81 (2008)

1111-Fermi surface

D. H. Lu, *et al.* Nature **455** 81 (2008)

"A quantitative agreement can be found between the angle-resolved photoemission spectra and the calculated band dispersions after shifting the calculated bands up by 0.11 eV and then renormalizing by a factor of 2.2."

How does one distinguish electron pockets from hole pockets? How many pockets are there?

Comparison to Fermi surface calculations

S. Lebègue, PRB 75, 035110 (2007)

What information does ARPES give about Fermi surfaces and electronic band structure?

(+answers specific to LaFePO)

- Fermi surface size and number (related to charge count)
 - 5 total Fermi surfaces, giving electron count of ~5 per unit cell
 - 6 are expected
 - Discrepancy may arise from polar surface
- Electron vs hole pockets + their locations 3 hole pockets at Γ , 2 electron pockets at M
- Band mass renormalization
 2.2 relative to LDA (one way of parametrizing correlations)

Effect of magnetism and orthorhombicity on fermiology

112 Fe-pnictides are easier to prepare as single crystals and can be doped in many ways

122 materials

Material	M-site dopant	$\begin{array}{l} T_c \ (\mathrm{K}) \ \mathrm{vs} \ x, \\ y = z = 0 \end{array}$	Ref.	Fe-site dopant	$T_c (K) vs y, x = z = 0$	Ref.	As-site dopant	$T_c (K) vs z, x = y = 0$	Ref.
BaFe ₂ As ₂	К	38/0.4	Rotter, Tegel, and Johrendt (2008)	Со	22/0.2	Sefat et al. (2008b)	Р	30/0.7	Kasahara <i>et al.</i> (2010); Jiang <i>et al.</i> (2009)
	Rb	23/0.1	Bukowski et al. (2009)	Ni	20.5/0.1	L. J. Li et al. (2009)			
				Pd	19/0.11	Ni et al. (2009)			
				Rh	24/0.11	Ni et al. (2009)			
				Ru	21/0.9	Sharma et al. (2010)			
				Pt	25/0.1	Zhu et al. (2010); Saha et al. (2010b)			
SrFe ₂ As ₂	K	36.5/0.5	Sasmal et al. (2008)	Co	20/0.2	Leithe-Jasper et al. (2008)	Р	27/0.7	Shi et al. (2009)
	Na	35/0.5	Goko et al. (2009)	Ni	10/0.15	Saha et al. (2010a); Leithe-Jasper et al. (2008)			
	Cs	37/0.5	Sasmal et al. (2008)	Pd	9/0.15	F. Han et al. (2009)			
	La	22/0.4	Muraba et al. (2010)	Rh	22/0.25	F. Han et al. (2009)			
				Ru	13.5/0.7	Oi et al. (2009a)			
				Ir	22/0.5	F. Han et al. (2009)			
				Pt	16/0.16	Kirshenhaum et al. (2010)			
CaFe ₂ As ₂	Na	33/0.66	K. Zhao <i>et al.</i> (2010) (see also Wu <i>et al.</i> , 2008a)	Co	17/0.06	Kumar <i>et al.</i> (2009b)	Р	13/0.3	Shi et al. (2009)
				Ni	15/0.06	Kumar et al. (2009a)			
				Rh	18/0.1	Oi et al. (2011)			
EuFe ₂ As ₂	К	32/0.5	Jeevan <i>et al.</i> (2008b), Anupam <i>et al.</i> (2009)				Р	26/0.6	Ren et al. (2009); Jeevan et al. (2011)
	Na	35/0.3	Y. Qi et al. (2008)						

TABLE II. T_c versus composition in $M_{1-x}A_xFe_{2-y}TM_yAs_{2-z}P_z$ T_cs given are the maxima versus composition. Only one site is doped at a time.

^aNote: Cu substituted for Fe in BaFe₂As₂ suppresses T_S and T_{SDW} but does not induce superconductivity (Canfield *et al.*, 2009b) while Mn substituted for Fe in SrFe₂As₂ up to x = 0.3 is relatively ineffective in suppressing T_S and T_{SDW} (Kasinathan *et al.*, 2009).

G. R. Stewart, Rev. Mod. Phys. 83 p1589 (2011)

Magnetism and structural phase transition in 122 materials

2 Fe tetragonal unit cell

Magnetic order with orthorhombic unit cell

*Structural and magnetic ordering have same unit cell, but orthorhombic phase transition usually happens first

Lumsden *et al,* J. Phys.: Condens. Matter **22** 203203 (2010)

Expected FS reconstruction

Tetragonal/Paramagnetic

Note broken 4-fold rotation symmetry!

Yi et al. PNAS 108 6878 (2011)

Problem: twinning

BaFe₂As₂

Image size is several hundred microns and characteristic domain size is 10-50 microns

Tanatar et al. PRB 79, 180508R (2009)

Solution 1: mechanical de-twinning

Signatures of band folding: extra bands

Material: BaFe₂As₂

Raw data

2nd derivative

0.00 -0.10 80k 0.00 -0.10 80K 0.00 0.10 110K 00.00 -0.10 E-E_F (eV) 0 0.00 -0.10 130K -0.10 0.00 -0.10 0.00 -0.10 0.00 -0.10 2.0 0.0 0.0 1.0 1.0 2,0 k (π/a) Yi et al. PNAS 108 6878 (2011)

X detwinned **F**

Solution 2: micro-ARPES

- Spot size ~50 μm (usually synchrotron beams used for ARPES are ~150-200μm)
- Now, beamlines with good energy/momentum resolution and ~10µm spot size are available, or beamlines where resolution is sacrificed to get ~100nm spot
- This paper also used matrix elements in quantitative way to discern orbital character of bands

Summary of SDW

- Magnetic order *inferred* from ARPES because of its effect on band structure and Fermi surface
- Modifications of ARPES technique needed to deal with twinning
- Relevant to discussion of nematicity (next lecture)

Next: superconductivity

ARPES measurements of superconducting gaps in Fe-SCs

- Much more difficult than cuprates because:
 - Tc is lower (100K vs 25K)
 - Gaps are smaller (~30 meV vs 3 meV)
 - Multiple Fermi surfaces (1 vs 5)

Material 1: LiFeAs (111)

 DFT calculations showed that LiFeAs is not expected to have surface states, giving cleaner ARPES signal (Lankau *et al* PRB **82**, 184518 (2010))

Superconducting gap in LiFeAs (T_c =18K)

K. Umezawa *et al,* PRL **108**, 037002 (2012)

- Gaps are anisotropic but there are no nodes
- Consistent with s_{\pm} pairing

Superconducting gap in $BaFe_2(As_{0.7}P_{0.3})_2$ (T_c=30K)

FS is 3D, so you need to access different kz to fully map out superconducting gap

Zhang et al, Nat. Phys. 8 371 (2012)

$k_z(k_\perp)$ in ARPES

Final state dispersion assumed to be free-electron-like: $E_f(\mathbf{k}) = \frac{\hbar^2 k^2}{2m} - |E_0| = \frac{\hbar^2 (k_{\parallel}^2 + k_{\perp}^2)}{2m} - |E_0|$

$$E_{kin} = E_f - \Phi \qquad \hbar k_{\parallel} = \sqrt{2mE_{kin}} sin\vartheta$$

$$k_{\perp} = \frac{1}{\hbar} \sqrt{2m(E_{kin}\cos^2\vartheta + V_0)}$$

 V_0 =inner potential=bottom of valence band Determined by:

- Comparison to band structure calculations
- Experimentally observed periodicity of $E_f(\mathbf{k})$, measured by varying photon energy

A. Damascelli,

https://www.cuso.ch/fileadmin/physique/document/ Damascelli ARPES CUSO 2011 Lecture Notes.pdf

SC gap in $BaFe_2(As_{0.7}P_{0.3})_2 (T_c=30K)$

Measurement temperature=2K

A

 $k_{y}\left(\mathbf{\tilde{A}}^{^{-1}}\right)$

0.4

0.2

-0.2

-0.4

c pol.

-0.4

Usually, ARPES can only ٠ measure down to ~8K

Okazaki et al, Science **337** p1314 (2012)

Summary: superconducting gap in Fe-SCs

- Different materials and different experiments yield different gap structure
- This ambiguity holds if one considers other techniques for assessing gap structure (e.g. specific heat, thermal conductivity)

Monolayer FeSe

Bulk FeSe

- T_c=9K at ambient pressure
- T_c can be increased to 37K with pressure

Monolayer (1 unit cell) FeSe on $SrTiO_3$ (TiO₂ terminated)

- Gap ~20 meV→suggests high Tc
- Gap persists to >50K
- Highest reported Tc=109K, highest accepted Tc=65K

Medvedev et al, Nat. Mater 8 630 (2009)

Wang et al, Chin. Phys. Lett. 29 037402 (2012)

Monolayer FeSe: Fermiology

High-Tc FeSe monolayer does not have FS at Γ , unline bulk FeSe and most other Fe-SCs

He et al. Nat. Mater. 12 605 (2013)

Monolayer FeSe: possible mechanism of T_c enhancement

- Observation: 'copies' of band structure in a way which is not consistent with quantum well state
- Interpretation: strong coupling to phonon mode in STO at q=0
- Consequence: interface eph coupling is responsible for Tc enhancement

Lee *et al.* Nature **515** 245 (2014)

Summary 1: Fe-SCs vs cuprates

Property	Cuprates	Fe-SCs
Number of compounds	Many	Many++
Building blocks	CuO ₂ plane or CuO ₆ octahedral	FeAs or FeSe layers
Dimensionality	Almost 2D	Almost 2D, but 3D effects are important too
Number of bands crossing E _F	1 per CuO2 plane, derived from Cu $3d_{x^2-y^2}$ orbitals	Usually 5, originating from Fe $3d_{xy,yz,xz}$ orbitals
Tuning phase diagram	Electron or hole doping; most materials cannot be tuned over entire superconducting dome	Electron, hole, isovalent doping; pressure; most materials can be tuned over entire superconducting dome
Proximity to magnetism	Yes, but overlap only (potentially) on electron-doped side; $q = (\frac{1}{2}, \frac{1}{2})$	Yes, likely microscopic coexistence; q =(0, ½)
SC gap symmetry	d-wave with line nodes on electron and hole-doped side	Symmetry and presence of nodes debated and may be materials dependent
SC mechanism	Debated	Debated

Summary 2: ARPES measurements on Fe-SCs

- Technological advancements of the technique that Fe-SCs have fostered or utilized
 - In-situ uniaxial pressure
 - Small beam spot size
 - Ultra low temperature (<4 K)
 - 2nd derivative band visualization
 - k_{\perp} mapping
 - Quantitative analysis of matrix elements to discern orbital character of bands
- Contributions to our understanding of Fe-SCs
 - Fermiology
 - Band folding in ortho/SDW phase
 - Band-dependent superconducting gaps in some materials

Resources

- Q. Si, R. Yu, E. Abrahams, *High temperature* superconductivity in iron pnictides and chalcogenides, Nat. Rev. Mater. **1** 1 (2016)
- G. R. Stewart, *Superconductivity in iron compounds,* Rev. Mod. Phys. **83** 1589 (2011)
- Hosono and Kuroki, *Iron-based superconductors: Current status of materials and pairing mechanism*, Physica C **514** 399–422 (2015)
- A. Chubukov and P. Hirschfeld, *Iron-based* superconductors, seven years later, Physics Today 68, 46 (2015)