
Lecture 11: 

 Representative from CalTeach/MAST 

 Review: 1D lattice 

 Higher dimension lattices: transverse waves 

 Counting number of dispersions 

 Quantization of elastic waves 

Review 

1D lattice: 

Consider a line of identical masses, m, a distance a apart connected by springs.

  

The position of each mass is labeled as in the image below, with some central mass chosen to have the 

position label na (n is an integer). 

When a mass is displaced from its equilibrium position, we call this displacement 𝑢(𝜈𝑎), where 𝜈 is an 

integer.  For the n-th atom, this  small but arbitrary displacement has the label  u(na) 

When all of the atoms are subjected to small but arbitrary dispacements, the total potential energy is 

given by: 

𝑈𝑡𝑜𝑡 =
1

2
𝐶 ∑[𝑢(𝑛𝑎) − 𝑢([𝑛 + 1]𝑎)

𝑛

]2 

Here, the term in parenthesis after the sum measures how far a given spring has been stretch and 

compressed.  It is for this reason that we only count the neighbor to the right of each atom.  Now, write 

equation of motion for atom located at position na 

𝑚𝑎 = 𝐹 

𝑚
𝜕2𝑢(𝑛𝑎)

𝜕𝑡2
= −

𝜕𝑈𝑡𝑜𝑡

𝜕𝑢(𝑛𝑎)
 

Plugging this into the equation of motion above (most terms drop out because u(na) only appears twice 

in the sum: 

𝑚
𝜕2𝑢(𝑛𝑎)

𝜕𝑡2
= −𝐶[2𝑢(𝑛𝑎) − 𝑢([𝑛 − 1]𝑎) − 𝑢([𝑛 + 1]𝑎)] 

We are seeking wave-like solutions, which have the form: 

𝑢(𝑛𝑎, 𝑡) ∝ 𝑒𝑖(𝑘𝑛𝑎−𝜔𝑡) 



Substitute the solution 𝑢(𝑛𝑎, 𝑡) ∝ 𝑒𝑖(𝑘𝑛𝑎−𝜔𝑡) into the equation of motion and drop common 

exponential terms that remain: 

𝑚𝜔2 = 𝐶[2 − 2𝑐𝑜𝑠𝑘𝑎] 

Solve for dispersion relation (𝜔 𝑣𝑠 𝑘) 

𝜔 = √
2𝐶(1 − 𝑐𝑜𝑠𝑘𝑎)

𝑚
 

Use the trig identity sin2 𝜃

2
=

1−𝑐𝑜𝑠𝜃

2
 

𝜔 = 2√
𝐶

𝑚
|𝑠𝑖𝑛

𝑘𝑎

2
| 

The absolute value appears around the sine to ensure that 𝜔 is positive 

This solution describe a propagating wave with 

Phase velocity: 𝑣𝑝 = 𝜔/𝑘 

Group velocity: 𝑣𝑔 =
𝜕𝜔

𝜕𝑘
 

For the dispersion relation for this propagating wave, we consider small k where 𝑠𝑖𝑛𝜃~𝜃 

𝑣𝑔,𝑠𝑚𝑎𝑙𝑙 𝑘 = 𝑎√
𝐶

𝑚
 

A plot of the dispersion relation is shown below: 

 

Since the frequency goes as the absolute value of the sine of momentum (k), the dispersion relation is a 

function which repeats infinitely.  However, beyond the first brillouin zone, the information is 

redundant. 

When we consider a one dimensional lattice with two types of atoms, and either set the masses to be 

different or the spring constants to be different (or both) we derive two types of solutions: 



𝜔2 =
(𝐶1 + 𝐶2)

𝑚
±

1

𝑚
√𝐶1

2 + 2𝐶1𝐶2𝑐𝑜𝑠𝑘𝑎 + 𝐶2
2 

This has two distinct branches: an acoustic (A) similar to the one we had before and a new one called an 

optical branch (O) 

 

 

Higher dimensions: transverse waves 

To extract transverse waves, we need to consider a system with more than one dimensions. 

Consider a square lattice (2D) with identical atoms spaced a apart in all directions.  Every atom has 8 

nearest neighbors instead of 2.  Because some of those neighbors are further apart than others, we use 

two spring constants. 

𝐶1: for atoms separated by a 

𝐶2: for atoms separated by 𝑎√2 

Displacements in the x-direction are indicated by u, and displacements in the y-direction are indicated 

by v. 

We label columns of atoms with the position indices (n-1)a,na,(n+1)a, (n+2)a….and we make our 

problem simpler by only considering modes in which all the atoms in a column move together as a unit.  

Of course, the atoms in a 2D lattice are not necessarily constrained in this way, but we are solving a 

simpler problem to enhance tractability.  Notice that if we displace plane (n+1)a to the right, spring 𝐶2 

contributes a spring constant 𝐶2/√2 in the x direction, and the atom in the center of the drawing will 

feel that force from two 𝐶2 springs on its right, but only one 𝐶1 spring.  Similarly, if we translate plane 

(n+1)a up, the total upward force on the central atom will be proportional to 2𝐶2/√2 



 

We derive equations of motion as before, so I won’t go into too much detail. 

𝑚𝜕2𝑢(𝑛𝑎)/𝜕𝑡2 = −𝐶1[2𝑢(𝑛𝑎) − 𝑢([𝑛 − 1]𝑎) − 𝑢([𝑛 + 1]𝑎)]

−
2𝐶2

√2
[2𝑢(𝑛𝑎) − 𝑢([𝑛 − 1]𝑎) − 𝑢([𝑛 + 1]𝑎)]  

𝑚𝜕2𝑣(𝑛𝑎)/𝜕𝑡2 = −
2𝐶2

√2
[2𝑣(𝑛𝑎) − 𝑣([𝑛 − 1]𝑎) − 𝑣([𝑛 + 1]𝑎)] 

First, consider a transverse wave: displacements in the y direction, but propagation in the x direction 

(we have implicitly plugged in na for x in the exponent). 

𝑣 = 𝑣0𝑒𝑖(𝑘𝑛𝑎−𝜔𝑡) 

Plug this into the equation for v above 

𝑚𝜔2 = 2𝐶2/√2[2 − 2𝑐𝑜𝑠𝑘𝑎] 

Use half-angle trig identities as before 

𝜔 = 2 |𝑠𝑖𝑛
𝑘𝑎

2
| √

2𝐶2

𝑚√2 
  

In the limit of very small k, 𝑣𝑔,𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 =
𝜕𝜔

𝜕𝑘
= 𝑎√

2𝐶2

𝑚√2 
 

Now we consider a longitudinal wave: 

𝑢 = 𝑢0𝑒𝑖(𝑘𝑛𝑎−𝜔𝑡) 

Plug this in to the first formula above 

𝑚𝜔2 = 𝐶1[2 − 2𝑐𝑜𝑠𝑘𝑎] + 2𝐶2/√2[2 − 2𝑐𝑜𝑠𝑘𝑎] 



𝜔 = 2 |𝑠𝑖𝑛
𝑘𝑎

2
| √

𝐶1

𝑚
+

2𝐶2

𝑚√2
    

In the limit of very small k, 𝑣𝑔,𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 =
𝜕𝜔

𝜕𝑘
= 𝑎√

𝐶1

𝑚
+

2𝐶2

𝑚√2
  > 𝑣𝑔,𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 

Thus, we end up with two acoustic branches with different propagation velocities 

(ignore A, B, C letters) 

Question: why does the longitudinal branch have a faster group velocity? 

The model of the 2D lattice will also have optical branches branches, which will not be derived here. 

Counting how many branches we have 

The examples we have seen in class so far: 

Model # Acoustic branches # optical branches 

1D, 1 atom per basis 1 0 

1D, 2 atoms per basis 1 1 

2D, 1 atom per basis 2 (1 Long., 1 Trans.) ? 

3D, 1 atom per basis 3 (1 Long., 2 Trans.—based on 
propagating waves in 
continuous media in last 
chapter) 

? 

It turns out that for p atoms in the basis and D dimensions in the system there are pD normal modes in 

total (intuition: each atom can independently move in D dimensions; so in 3D, each atom can 

independently move in x, y, and z direction) 

We see in the table above that D of the modes are in the acoustic branch 

Thus, D(p-1) are in the optical branch.  This means that a material with a monatomic basis will not have 

any optical phonons. 

The image below shows atomic vibration dispersions in GaAs, a 3D material with 2 atoms in the 

primitive basis.  The letters on the horizontal axis denote different propagation directions ([100]=Γ →

𝑋,[110]=Γ → 𝐾,[111]=Γ → 𝐿).  Γ is at k=0.  We expect 3 acoustic dispersions and 3 optical ones.  Notice 



that in some propagation directions, the transverse branches are degenerate and it only looks like there 

are 2 total, but in less symmetric ones (e.g. [110]) they are not and you clearly see the expected result of 

3 optical and 3 acoustic branches. 

 

 

Quantization of elastic waves 

So far, we have not explicitly called on the quantum nature of atoms in a solid. 

It turns out that the energy of crystal lattice vibrations is quantized, meaning the 𝜔 variable we have 

been using does not exhibit continuum values, but rather, exhibits discrete values. 

A quantum of crystal lattice vibration is called a phonon.  Generally, the suffix –on in physics connotes 

something that behaves as a discrete particle.  So just like light can behave like both a particle and a 

wave in different circumstances, so can waves originating from atomic vibrations in solids. 

Going back to the definition of a quantum harmonic oscillator, the energy of an elastic mode of angular 

frequency 𝜔 is: 

𝐸 = (𝑛 +
1

2
) ℏ𝜔 

1

2
ℏ𝜔 is the zero point energy of the mode, and when 𝑛 > 0  it means that the mode is occupied by n 

phonons 

Quantization of phonon amplitude 

Consider a wave solution in 1 dimension of the form 𝑢 = 𝑢0𝑐𝑜𝑠 𝐾𝑥𝑐𝑜𝑠 𝜔𝑡, where 𝑢0 is the amplitude 

The energy of a mode in a harmonic oscillator is, on average, distributed half between kinetic energy 

and half between potential energy. 



The kinetic energy per unit volume is given by 
1

2
𝜌𝑣2 =

1

2
𝜌 (

𝜕𝑢

𝜕𝑡
)

2
=

1

2
𝜌𝑢0

2𝜔2 cos2 𝐾𝑥 sin2 𝜔𝑡 where 𝜌 is 

the mass density. 

In a crystal of volume V, this comes out to 
1

4
𝜌𝑢0

2𝜔2 sin2 𝜔𝑡 

where the extra factor of ½ comes from the avg value of 𝐶𝑜𝑠2 in a spatial integration interval. 

The average value of sin2 𝜔𝑡 over time is similarly ½, so the time and spatially averaged kinetic energy is 

given by: 

1

8
𝜌𝑉𝜔2𝑢0

2 =
1

2
(𝑛 +

1

2
) ℏ𝜔 where the extra factor of ½ on the right side comes because on average half 

of the energy of a harmonic oscillator is kinetic energy 

This gives: 

𝑢0 = 4 (𝑛 +
1

2
) ℏ/𝜌𝑉𝜔 

This shows that the amplitude of a lattice wave does not take on continuous values, but rather, is 

allowed discrete quantized values based on the integer n 

Quantization of momentum 

Quantization of momentum can be derived by adding boundary conditions to our ‘guess’ of a solution, 

𝑢 = 𝑢0𝑒𝑖(𝑘𝑛𝑎−𝜔𝑡), specifically, periodic boundary conditions.  We assume that there are N atoms in the 

chain and u(Na)=u(0).  Equivalently, u([N+1]a)=u(a). 

Plugging this into the wave-like solution, we get: 

𝑒𝑖(𝑘𝑁𝑎−𝜔𝑡) = 𝑒𝑖(0−𝜔𝑡) 

𝑒𝑖𝑘𝑁𝑎 = 1 

𝑘𝑁𝑎 = 2𝜋𝑛 (where n is an integer) 

𝑘 =
2𝜋𝑛

𝑎𝑁
 

Thus, k is not a continuous variable, but it only takes on quantized solutions.  However, for large N, the 

spacing between adjacent values is very small. 

Phonon momentum 

The horizontal axis of the 𝜔(𝑘) plots we have been drawing is alternately called ‘momentum’ and 

‘wavevector’.  It is connected to the reciprocal lattice via the concept of the ‘Brillouin zone’ which sets 

the minimum range of k needed to capture all of the information contained in 𝜔(𝑘) without 

redundancies.  It should be noted that reciprocal space is also called ‘momentum space.’ 

The momentum of a phonon is similar to a free-space momentum in some ways, but different in other 

ways. 



Similar: if a phonon makes a collision with a particle, such as a neutron or electron, it can impart its 

momentum and energy to that particle and vis versa.  This is how phonon dispersions are measured 

experimentally.  Typically, a beam of neutrons with a known incoming momentum and energy is fired at 

a crystalline material, and the distribution of momenta and energies of the diffracted beam gives 

information about energy and momentum that was lost/gained from colliding with phonons.  This 

property of phonons highlights the particle-like nature of their duality. 

Different: a phonon cannot take on any arbitrary momentum and its available momentum states are 

subject to the periodicity of the reciprocal lattice.  For example, a momentum k is equivalent to k+G 

where G is any vector of the reciprocal lattice.  As a corollary, if a phonon encounters a collision with a 

particle with momentum K such that the phonon momentum becomes k’=k+K and k’ falls outside of the 

first Brillouin zone, its final momentum will be equivalently be expressed as k’’=k-G, where k’’ is in the 

first Brillouin zone. 

In the next chapter, we will use the concept of phonons and their sometimes particle-like nature to 

understand thermal phenomena in real materials such as heat capacity and thermal conductivity. 

 

 

 

 

 

 


