
Lecture 13: continuation of understanding thermal properties of materials via phonons 

 Review: 

o Debye model for heat capacity 

o Density of states 

o Temperature dependence of heat capacity at high and low temperature 

 Einstein model for heat capacity 

 Anharmonic effects 

 Thermal conductivity 

Overview 

Chapter 5 focuses on using quantized vibration of the atomic lattice to understand thermal properties of 

materials—how they raise their temperature in response to an energy input, how they expand with 

temperature, and how they respond to a temperature gradient.  These are all very applicable and 

concrete concepts, but it is also challenging because this chapter uses prerequisites from quantum 

mechanics and statistical mechanics. 

Review 

In the previous chapter, we derived dispersion relations between the frequency and wavevector of 

waves in a crystalline solid, where the crystal is modeled as atoms on springs.  We learned that there are 

acoustic phonons and optical phonons with longitudinal and transverse versions of both.  Optical 

phonons only happen if there are more than one atoms per basis.  We also learned that phonons have a 

group velocity given by 𝑣𝑔 = 𝜕𝜔/𝜕𝑘, which is itself a function of wavevector because the dispersions 

are not perfectly linear. 

 

The derivation of the dispersion relations was purely classical, because there is nothing explicitly 

quantum mechanical about a bunch of masses connected by springs.  However, atoms are quantum 

mechanical particles, and one way that their quantum nature comes into play is via quantization of 



momentum.  By considering periodic boundary conditions for the system of masses on a spring and 

saying that there are N masses in total and the total length of the spring is L, we get that K can take on 

the values 0, ±
2𝜋

𝐿
, ±

4𝜋

𝐿
, … , ±𝑁𝜋/𝐿 

Thus, the k-axis of the dispersion relation is not continuous, but consists of N equally spaced ‘bins’ 

separated by Δ𝐾 = 2𝜋/𝐿.  As a corollary, the frequencies of the phonons can only take on certain 

values, based on the permissible values of K—these are the ‘normal modes’. 

Phonons are bosons, so each bin defined by a value of (𝐾, 𝜔) can hold 0,1 2, 3, 4 or however many 

particles.  The specific occupation number of each bin will depend on the temperature, and the 

expectation value is given by the Planck distribution. 

〈𝑛〉𝜔 =
1

𝑒−ℏ𝜔/𝑘𝐵𝑇 − 1
 

Colloquially, we say that at higher temperature, atoms vibrate around more.  The Planck distribution 

quantifies that statement: at higher temperature a ‘normal mode’ of a specific frequency has a higher 

expected occupation number, meaning that there are more quanta of atomic lattice vibrations at that 

frequency. 

Our first application of this concept is towards calculating heat capacity, which is a temperature-

dependent materials property that tells you how much you can raise the temperature of that solid by 

having it absorb a certain amount of energy. 

The heat capacity at constant volume, defined as 𝑐𝑉 = (
𝜕𝑈

𝜕𝑇
)

𝑉
 where U is the total internal energy. 

𝑈 = ∑ ∑ < 𝑛𝐾,𝑝 > ℏ𝜔𝐾,𝑝

𝑝𝐾

= ∑ ∑
ℏ𝜔𝐾,𝑝

𝑒ℏ𝜔𝐾,𝑝/𝑘𝐵𝑇 − 1
𝑝𝐾

 

Where the sum over K adds up all of the ‘momentum bins’ and the sum over p adds up all the 

‘polarizations’ (longitudinal, transverse, and all of the acoustic and optical phonons). 

It is convenient to replace the sum over K with an integral, because adjacent values of K are so close 

together that it is almost a continuum. 

𝑈 = ∑ ∫ 𝑑𝜔𝐷𝑝(𝜔)
∞

0𝑝

ℏ𝜔

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1
 

Where 𝐷𝑝(𝜔) is the density of states—the number of phonon modes between frequency 𝜔 and 𝜔 +

𝑑𝜔 of polarization p.  Densities of states are encountered in various contexts in solid state physics, and 

they are used to enumerate the number of quantum states available to be occupied by various particles.  

The units are (number of states)/energy.  The problem of finding heat capacity has thus become a 

problem of finding the density of states.   

The density of states in three dimensions has the general expression: 𝐷(𝜔) =
𝐾2𝑉

2𝜋2

𝑑𝐾

𝑑𝜔
 

 



If the dispersion of all phonon branches in a material is calculated, then the density of states can be 

derived.  However, for ease of analytical calculations, we make approximations for the dispersion. 

The first approximation we considered is the Debye model, which approximates a solid as only having 

acoustic phonons with a single (not k-dependent) group velocity and a cutoff frequency 𝜔𝐷 

𝜔 ≡ 𝑣𝐾 

 

Putting this all together with the generic expression for density of states in 3D, we get: 

𝑈 =
3𝑉ℏ

2𝜋2𝑣3
∫ 𝑑𝜔

𝜔𝐷

0

𝜔3

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1
 

This integral can only be solves analytically in the limit of very low and very high temperature.  It is 

customary to make the following substitutions: 

𝑥 ≡
ℏ𝜔

𝑘𝐵𝑇
 

𝑥𝐷 ≡ ℏ𝜔𝐷/𝑘𝐵𝑇 ≡ 𝜃/𝑇 

𝜃 is defined as the debye temperature (the temperature equivalent of the debye temperature).  It is 

given by: 

𝜃 =
ℏ𝑣

𝑘𝐵
(

6𝜋2𝑁

𝑉
)

1/3

 

Notice that the only intrinsic material’s dependent parameter in the debye temperature is the phonon 

propagation velocity, which is basically the speed of sound. 

The general expression for the heat capacity (temperature derivative of U) after these substitutions are 

made is: 



𝐶𝑉 = 9𝑁𝑘𝐵 (
𝑇

𝜃
)

3

∫ 𝑑𝑥
𝑥4𝑒𝑥

(𝑒𝑥 − 1)2

𝑥𝐷

0

 

And a graphical form is shown below. 

In the limit of low temperature, the upper bound of the integral is set to go to infinity.  In the high 

temperature limit, the exponents are taylor expanded and only leading order terms are kept at the end. 

Low temperature limit: 𝐶𝑉 ≈
12𝜋4

5
𝑁𝑘𝐵 (

𝑇

𝜃
)

3
 

This gives a molar heat capacity of1944 (
𝑇

𝜃
)

3
 𝐽/𝐾 

This T^3 behavior is supported by experiments. 

High temperature limit: 𝐶𝑉 ≈ 3𝑁𝑘𝐵 

This gives a molar heat capacity of 24.9 J/K in the high temperature limit. 

This is the heat capacity expected for a classical gas.  The crossover from ‘quantum’ to ‘classical’ 

behavior for the phonon gas happens around the debye temperature. 

 

Example: If one mole of material absorbs 1 joule of energy, what will its temperature be raised to? 

High temperature: 𝑐𝑉,𝑚𝑜𝑙𝑎𝑟 = 24.9 𝐽/𝐾 

1J

Δ𝑇
= 24.9 → Δ𝑇 = 0.04𝐾 

Low temperature (starting at 0K): 𝑐𝑉,𝑚𝑜𝑙𝑎𝑟 = 1944 (
𝑇

𝜃
)

3
 𝐽/𝐾 

We need to know what material we are talking about, and it is better if we consider an insulator or a 

semiconductor such that electrons do not contribute to heat capacity.  Consider silicon with a Debye 

temperature of 645K. 



We solve this problem by integrating the heat capacity wrt to temperature (opposite procedure of 

getting heat capacity from derivative of energy) 

1944

6453
∫ 𝑇3

𝑇𝐹

0

= 1𝐽 

𝑇𝐹 is the final temperature that is reached. 

After integrating and solving for the final temperature we get: 𝑇𝐹 = 27𝐾 = Δ𝑇 

Thus the intuition we get is that at lower temperature, a solid’s temperature will change more if it 

absorbs the same amount of energy because its heat capacity is smaller. 

Einstein model of density of states 

The Einstein model is much simpler than the Debye model.  It considers N oscillators of the same 

frequency (𝜔0).  Whereas the Debye model approximated all phonons as being acoustic, the Einstein 

model approximates all of them as being optical. 

This gives a density of states 𝐷(𝜔) = 3𝑁𝛿(𝜔 − 𝜔0) 

The total internal thermal energy is given by: 

𝑈 = 𝑁〈𝑛〉ℏ𝜔 

As we derived in the previous lecture, 〈𝑛〉 =
1

𝑒ℏ𝜔/𝑘𝐵𝑇−1
 which is also the planck distribution applicable to 

a gas of photons in thermal equilibrium 

This gives  𝑈 =
3𝑁ℏ𝜔0

𝑒ℏ𝜔0/𝑘𝐵𝑇−1
 and we can get the heat capacity by taking a temperature derivative 

𝑐𝑉 =
3𝑁(ℏ𝜔0)2𝑒ℏ𝜔0/𝑘𝐵𝑇

𝑘𝐵𝑇2(𝑒ℏ𝜔0/𝑘𝐵𝑇 − 1)2
 

Using the substitution 𝑥 ≡ ℏ𝜔0/𝑘𝐵𝑇 this gives: 

𝑐𝑉 =
3𝑁𝑘𝐵𝑥2𝑒𝑥

(𝑒𝑥 − 1)2
 

In the limit of high temperature this is approximately 

𝑐𝑉 ≈
3𝑁𝑘𝐵𝑥2(1 + 𝑥)

𝑥2
≈ 3𝑁𝑘𝐵 

Which is the same result as for a classical gas and the same as for the debye model. 

In the limit of low temperature, 𝑒ℏ𝜔0/𝑘𝐵𝑇 ≫ 1 so (𝑒ℏ𝜔0/𝑘𝐵𝑇 − 1) ≈ 𝑒ℏ𝜔0/𝑘𝐵𝑇 

Thus, 𝑐𝑉 ≈ 3𝑁𝑘𝐵(ℏ𝜔0/𝑘𝐵𝑇)2𝑒−ℏ𝜔0/𝑘𝐵𝑇 

This exponential temperature dependence of heat capacity at low temperature is not consistent with 

experiments, so the Einstein model is not a good description for this aspect of physical systems.  



However, the Einstein model is used in other contexts in solid state physics because it is a good 

approximation of the optical part of the phonon spectrum. 

To summarize, we have thus far considered two approximations to the real phonon density of states for 

the purpose of calculating heat capacity. 

 

Thermal expansion 

Question: why does heat expand most material? 

Answer: Colloquially, people often say that heat expands materials because there is more thermal 

energy and atoms vibrate around more. 

But this does not square with the mathematical description of lattice vibrations that we have been using 

thus far, which is a harmonic oscillator potential.  A classical harmonic oscillator with more average 

energy would simply exhibit further deviations from its equilibrium position, but it would do this 

symmetrically in both directions.  Thus, we would not expect atoms in general to move further apart 

from their neighbor if they were really in a perfect harmonic oscillator potential. 

But this is a shortcoming of the model we have been using, and we saw when we calculated the 

potential energy landscape for atoms in a van der waals solid or an ionic solid that these potentials are 

actually asymmetric when you move further away from the minimum position.  It is easier to pull atoms 

apart than to push them together. 

Figure: Lennard-Jones potential for van der waals solid,  

𝑈(𝑅) = 4𝜖[(
𝜎

𝑅
)

12

− (
𝜎

𝑅
)

6

] 



We can approximate a real potential by a polynomial expansion to order higher than 𝑥2.  Use the 

variable x to denote atomic separation from their equilibrium position. 

𝑈(𝑥) = 𝑐𝑥2 − 𝑔𝑥3 − 𝑓𝑥4 

Where c, g, and f are all positive.   

We calculate the expectation value of the displacement using the Boltzmann distribution function 

〈𝑥〉 =
∫ 𝑑𝑥 𝑥𝑒−𝛽𝑈(𝑥)∞

−∞

∫ 𝑑𝑥 𝑒−𝛽𝑈(𝑥)∞

−∞

 

As before, 𝛽 = 1/𝑘𝐵𝑇.  The term 𝑒−𝛽𝑈(𝑥) represents the probability of being at a particular position x at 

a given temperature (think of an Arrhenius equation in which high-energy processes are exponentially 

suppressed at low temperature).  The denominator is thus a normalization factor which sums up all of 

the thermal probabilities for an atom to have every possible deviation from its equilibrium position at a 

particular position.  The numerator determines the mean deviation at a particular temperature by 

weighing each deviation by its probability. 

For small deviations x, we can expand the exponential, after first pulling out the 𝑒𝑐𝑥2
 term which we can 

integrate 

∫ 𝑑𝑥 𝑥𝑒−𝛽𝑈(𝑥)
∞

−∞

≈ ∫ 𝑑𝑥 𝑒−𝛽𝑐𝑥2
𝑥(1 + 𝑔𝛽𝑥3 + 𝑓𝛽𝑥4) = ∫ 𝑑𝑥 𝑒−𝛽𝑐𝑥2

(𝑥 + 𝑔𝛽𝑥4 + 𝑓𝛽𝑥5)
∞

−∞

∞

−∞

 

Integrals of the form ∫ 𝑥𝑛𝑒−𝑎𝑥2∞

−∞
 have known solutions and are zero for odd functions of x 

Thus ∫ 𝑑𝑥 𝑥𝑒−𝛽𝑈(𝑥)∞

−∞
≈

3𝜋1/2

4

𝑔

𝑐5/2

1

𝛽3/2 

Similarly, ∫ 𝑑𝑥 𝑒−𝛽𝑈(𝑥)∞

−∞
≈ ∫ 𝑑𝑥 𝑒−𝛽𝑐𝑥2

= (
𝜋

𝛽𝑐
)

1/2∞

− ∞ 
 

Putting it together: 

〈𝑥〉 ≈
3𝑔

4𝑐2
𝑘𝐵𝑇 

According to this derivation, the mean atomic displacement grows linearly with temperature, which 

indicates that the thermal expansion coefficient (usually called 𝛼) is independent of temperature.  This is 

only really true above the debye temperature, and a more careful definition is needed to get the full 

temperature dependence. 

Note that we have just calculated linear thermal expansion, and often, we want to work with volume 

thermal expansion.  For an isotropic solid, the coefficient of volumetric thermal expansion is 3 times the 

linear thermal expansion coefficient. 

Example:  

The coefficient of linear thermal expansion for copper (whose Debye temperature is close to room 

temperature) is 17 × 10−6𝐾−1 at room temperature 



That means that a copper pot used to boil water will experience a change in linear dimension 
Δ𝐿

𝐿
= 17 ×

10−4 as it is heated up (using Δ𝑇 = 100𝐾).  That means that if you start out with a pot of radius 10cm, 

by the time the water is boiling, the radius is 10 cm and 170 microns.  Thermal expansion of solids tends 

to be very small, but it needs to be taken into account when designing engineering structures like 

railroads and bridges. 

Sketch of quantum treatment of thermal expansion 

The derivation above is intuitive, but it is only physically correct when  the phonons in a material behave 

like a classical gas, above the Debye temperature. 

At an arbitrary temperature, we are seeking the thermal expansion coefficient 𝛼 at constant pressure.  

We are assuming an isotropic material such that the volume thermal expansion coefficient is 3x the 

linear thermal expansion coefficient. 

𝛼 =
1

𝑙
(

𝜕𝑙

𝜕𝑇
)

𝑃
=

1

3𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑃
 

The bulk modulus of a material is the volume contraction in response to hydrostatic (equal on all sides) 

compression: 

𝐵 = −𝑉 (
𝜕𝑃

𝜕𝑉
)

𝑇
 

Plugging in the bulk modulus above and noting chain rule 

𝛼 =
1

3𝐵
(

𝜕𝑃

𝜕𝑇
)

𝑉
 

The goal is to now express the derivative in terms of thermodynamic quantities.  Pressure is the volume 

derivative of the Helmholtz free energy, F=U-TS  

𝑃 = −
𝜕

𝜕𝑉
[𝑈 − 𝑇 ∫

𝑑𝑇′

𝑇′

𝜕

𝜕𝑇′
𝑈(𝑇′, 𝑉)

𝑇

0

] 

We have previously derived expressions for internal energy U in terms of the occupation numbers, so 

the quantum derivation of thermal expansion will involve using those again. 

In the end, we get that 𝛼 is proportional to the heat capacity and has the following temperature 

dependence: 

Low temperature: 𝛼~𝑇3 

High temperature (well above the Debye temperature): 𝛼~𝑐𝑜𝑛𝑠𝑡 (which we got with a classical 

argument) 


