
Lecture 17 

 Electric conduction 

 Electrons’ motion in magnetic field 

 Electrons’ thermal conductivity 

Brief review 

In solid state physics, we do not think about electrons zipping around randomly in real space.  This is 

because if we define electrons as plane waves characterized by a momentum state 𝜓~𝑒𝑖𝒌∙𝒓.  When 

described in momentum space these electrons form an organized structure called a Fermi sphere, which 

is a sphere in k-space divided into tiny ‘boxes’ of dimension (
2𝜋

𝐿
)

3
 which can each hold one spin up and 

one spin down electron.  Only electrons very close to the boundary of the sphere do anything—all the 

others are inert (in contrast to the real-space picture where all valence electrons contribute to metallic 

conduction).  The electrons close to the boundary have 

(energy): 𝜖 = 𝜖𝐹 =
ℏ2𝑘𝐹

2

2𝑚
 

(momentum): 𝑘 = 𝑘𝐹 

(velocity) 𝑣 = 𝑣𝐹 = ℏ𝑘𝐹/𝑚 

For this lecture, we will not explicitly use this formalism very much, and will revert to a more classical 

picture of electric conduction.  The most important part of this portion of the textbook are the concepts 

and language, which are used in modern solid state physics research, but a more rigorous description of 

electrical conduction, in terms of the Fermi sphere construction, will be left to a later course. 

Electrical conductivity (semi-classical treatment) 

The Fermi sphere structure of electrons in a metal, with a hierarchy of energy states, provides a much 

more organized way of understanding electrical conduction than the real-space picture of electrons 

haphazardly zipping around and bumping into things. 

The momentum of a free electron is related to its wavevector by 

𝑚𝒗 = ℏ𝒌 

In an electric field R and magnetic field B, the force on an electron (charge e) is given by: 

𝑭 = 𝑚
𝑑𝒗

𝑑𝑡
= ℏ

𝑑𝒌

𝑑𝑡
= −𝑒(𝑬 +

1

𝑐
𝒗 × 𝑩) 

We set B=0 for now. 

In the absence of collisions, the Fermi sphere will be accelerated by an electric field as a unit.  If a force 

F=-eE is applied at t=0 to an electron gas, an electron with initial wavevector k(0) will end up at a final 

wavevector k(t) 

𝒌(𝑡) − 𝒌(0) = −𝑒𝑬𝑡/ℏ 



This statement applies to every electron in the Fermi sea without regards to the specific momentum or 

energy that electron has, so a Fermi sphere centered at k=0 at t=0 will have its center displaced by 

𝛿𝒌 = −𝑒𝑬𝑡/ℏ 

This also corresponds to a velocity kick 𝛿𝒗 = ℏ𝛿𝒌/𝑚 (found by replacing derivatives in equation of 

motion by infinitesimal changes 𝛿𝑘 and 𝛿𝑣) 

 

The Fermi sphere does not accelerate indefinitely, because electrons eventually do scatter with lattice 

imperfections, impurities, or phonons.  This characteristic scattering time is called 𝜏, which gives a 

‘steady state’ value of 𝛿𝒌 = −
𝑒𝑬𝜏

ℏ
= 𝑚𝛿𝒗/ℏ  

Thus, the incremental velocity imparted to electrons by the applied electric field is 𝛿𝒗 =
𝛿𝒌

𝑚
= −𝑒𝑬𝜏/𝑚  

If in a steady electric field, there are n electrons per unit volume, the current density (j) is given by 

𝒋 = 𝑛𝑒𝛿𝒗 = 𝑛𝑒2𝜏𝑬/𝑚 

This is a generalized version of Ohm’s law, because j is related to the current I, and electric field is 

related to a voltage or potential difference. 

The electrical conductivity is defined by 𝜎 =
𝑛𝑒2𝜏

𝑚
 

And the resistivity (𝜌) is defined as the inverse of conductivity 

𝜌 =
𝑚

𝑛𝑒2𝜏
 

Resistivity is related to resistance (R) via a materials geometry, so resistivity is considered to be a more 

fundamental quantity because it does not depend on geometry 

𝑅 =
𝜌ℓ

𝐴
 

Where ℓ is the length of the specimen, and A is the cross sectional area. 

What is the physical origin of a finite 𝝉? 



The derivation above stipulates that electrons scatter—bump into something and lose their momentum 

information—every interval 𝜏, which in real materials tends to be on the order of 10−14s, depending on 

temperature. 

 At room temperature, phonons provide the primary scattering mechanism for electrons.  To be 

clear, a perfect lattice will not scatter electrons and will not contribute to resistivity, but at 

higher temperature, a crystal lattice becomes increasingly ‘imperfect’ (because of increased 

atomic vibrations) which allows increased scattering off the lattice.  Or, if one views phonons as 

emergent particles with a certain energy and momentum, electrons scatter off these ‘particles’ 

such that the total energy and momentum is conserved.  This type of scattering happens every 

time interval 𝜏𝐿, which depends on temperature 

 At cryogenic temperature, electrons primarily scatter off impurities and other permanent 

defects in the crystalline lattice.    This type of scattering happens every time interval 𝜏𝑖, and is 

independent of temperature. 

The scattering frequency (inverse of scattering time) is given by adding up scattering frequencies from 

each contribution: 

1

𝜏
=

1

𝜏𝐿
+

1

𝜏𝑖
 

This also implies that the contribution to resistivity from each type of scattering adds up linearly 

𝜌 = 𝜌𝐿 + 𝜌𝑖  

Example: A copper sample has a residual resistivity (resistivity in the limit of T=0) of 1.7e-2 𝜇Ω 𝑐𝑚.  Find 

the impurity concentration. 

Solution: 

At zero temperature, only impurities contribute to resistivity 

𝜌 = 𝑚/𝑛𝑒2𝜏 

Solve for 𝜏.  

n is the electron concentration, and copper has 1 valence electron per atom.  Copper forms an FCC 

structure (4 atoms per cubic cell) with a unit cell dimension of 3.61e-10m.  Thus, 𝑛 = 8.5𝑥1028𝑚−3 

to solve for 𝜏, first change the units of 𝜌.  𝜌 = 1.7 × 10−10Ω m 

𝜏 =
𝑚

𝑛𝑒2𝜌
= 2.46 × 10−12𝑠 

This can be used to solve for an average distance (ℓ) between collisions using 

ℓ = 𝑣𝐹𝜏 

where 𝑣𝐹 is the Fermi velocity 

𝑣𝐹 = (
ℏ

𝑚
) (

3𝜋2𝑁

𝑉
)

1/3

= 1.6 × 106𝑚/𝑠 



ℓ = 3.9𝜇𝑚 

Thus, given the T=0 resistivity of this specimen, the average spacing between impurities is 3.9𝜇𝑚 which 

means an electron would travel on average  
(3.9×10−6)

(3.61×10−10)
= 12,341 unit cells before encountering an 

impurity 

Electrons’ motion in a magnetic field 

In an electric field R and magnetic field B, the force on an electron (charge e) is given by: 

𝑭 = 𝑚
𝑑𝒗

𝑑𝑡
= ℏ

𝑑𝒌

𝑑𝑡
= −𝑒(𝑬 +

1

𝑐
𝒗 × 𝑩) 

Again, we consider displacing the Fermi sphere by a momentum 𝛿𝒌 such that 

𝑚𝒗 = ℏ𝛿𝒌 

Where v is the incremental velocity kick that all electrons get. 

We express acceleration in a slightly different way than we did previously to write expressions for 

motion in electric and magnetic field applied simultaneously (previously, we dropped the first term on 

the left because in the steady state, time derivatives are zero, but this notation is being introduced 

because it is needed to study time-varying fields, like in your homework): 

𝑚 (
𝑑

𝑑𝑡
+

1

𝜏
) 𝒗 = −𝑒(𝑬 +

1

𝑐
𝒗 × 𝑩) 

A special case of this problem arises when the magnetic field is applied along the z axis (𝑩 = 𝐵�̂�): 

𝑚 (
𝑑

𝑑𝑡
+

1

𝜏
) 𝑣𝒙 = −𝑒(𝐸𝑥 +

𝐵𝑣𝑦

𝑐
) 

𝑚 (
𝑑

𝑑𝑡
+

1

𝜏
) 𝑣𝒚 = −𝑒(𝐸𝑦 −

𝐵𝑣𝑥

𝑐
) 

𝑚 (
𝑑

𝑑𝑡
+

1

𝜏
) 𝑣𝒛 = −𝑒(𝐸𝑧 + 0) 

In steady state, the time derivatives are zero, so the first terms on the left side disappear.  These 

equations then become: 

𝑣𝑥 = −
𝑒𝜏

𝑚
𝐸𝑥 − 𝜔𝑐𝜏𝑣𝑦 

𝑣𝑦 = −
𝑒𝜏

𝑚
𝐸𝑦 + 𝜔𝑐𝜏𝑣𝑥 

𝑣𝑧 = −
𝑒𝜏

𝑚
𝐸𝑧 

Where 𝜔𝑐 =
𝑒𝐵

𝑚𝑐
 is the cyclotron frequency.  The cyclotron frequency describes the frequency of 

electrons’ circular motion in a perpendicular magnetic field.  It is notable independent of the electron’s 

velocity or the spatial size of the circular orbit, and it only depends on a particle’s charge-to-mass ratio. 



Hall effect 

The hall effect refers to a transverse voltage that develops when a current flows across a sample at the 

same time that a magnetic field is applied in the perpendicular direction.  It is a very important 

characterization tool for assessing the number of charge carriers and their charge. 

In general, the transverse electric field will be in the direction 𝒋 × 𝑩, and customarily, the current (j) 

direction is set perpendicular to the magnetic field direction. 

We consider a specific case where 𝑩 = 𝐵�̂� and 𝒋 = 𝑗�̂� 

When electrons flow with a velocity 𝑣𝑥 perpendicular to the direction of the magnetic field, they will feel 

a force in the 𝒗 × 𝑩 direction, which is in the -y direction.  Thus, there will be an accumulation of 

negative charges on the –y side of the sample, leading to an electric field in the –y direction.  Note that 

this electric field will tend to deflect directions in the opposite direction from the magnetic field, so a 

steady state situation is reached where the Lorentz force from the magnetic field perfectly balances the 

force from the electric field. 

To write this more quantitatively: 

Use: 𝑣𝑦 = −
𝑒𝜏

𝑚
𝐸𝑦 + 𝜔𝑐𝜏𝑣𝑥 and set 𝑣𝑦 = 0 to reflect the steady state situation when there is no more y-

deflection 

𝐸𝑦 = −𝜔𝑐𝜏𝐸𝑥 = −
𝑒𝐵𝜏

𝑚𝑐
𝐸𝑥 

 

A note about signs: 

Electric current is defined as the flow of positive charges, so the electron velocity is in the opposite 

direction to the current (in this case, -x) [thus, 𝒗 × 𝑩 = 𝑣𝐵�̂� ] 

The negative sign is explicitly included in the definition of force (that an electron feels in a perpendicular 

magnetic field), so electrons will accelerate to the –y side of the sample 

The direction of the electric field is defined as the direction of the force that a positive test charge will 

feel, so electric field direction always points from positive to negative charges (towards –y in this case) 



A hall coefficient is defined as 

𝑅𝐻 =
𝐸𝑦

𝑗𝑥𝐵
 

Use 𝑗𝑥 =
𝑛𝑒2𝜏𝐸𝑥

𝑚
 and 𝐸𝑦 = −

𝑒𝐵𝜏

𝑚
𝐸𝑥 to evaluate 

𝑅𝐻 =
−𝑒𝐵𝜏/𝑚𝐸𝑥

𝑛𝑒2𝜏𝐸𝑥𝐵/𝑚𝑐
= −

1

𝑛𝑒𝑐
 

The two free parameters here are n (the electron concentration) and the sign of e.  In some metals, the 

dominant charge carriers are electrons, and in other metals, it is the voids left behind by electrons, 

which are called holes (and are mathematically equivalent to positrons, physical particles which are 

positively charged electrons.  The sign of the hall coefficient distinguishes between those two cases.  

Additionally, the number of mobile charge carriers in a metal might be different from the number of 

valence electrons you think you have, and hall coefficient measurements can detect that too.  In some 

carriers, both electrons and holes can be charge carriers, each with different densities, and in those 

cases, interpretation of the hall coefficient can be tricky. 

Thermal conductivity of metals 

In Ch5 we considered the thermal conductivity if heat could only be carried by phonons.  In metals, heat 

can be carried by electrons too. 

For phonons, thermal conductivity is given by 𝐾 =
1

3
𝐶𝑣ℓ and we can identify analogous quantities for 

metals. 

For phonons, v is the sound velocity—the group velocity that acoustic phonons follow.  For electrons, 

the equivalent quantity is the Fermi velocity (𝑣𝐹)—the group velocity of electrons at the Fermi energy 

(most electrons in a metal are inert, except for those that happen to have energy within ~𝑘𝐵𝑇 of the 

Fermi energy. 

C is the heat capacity per unit volume, and earlier in this chapter we calculated heat capacity for 

electrons 

𝐶𝑒𝑙 =
1

2
𝜋2𝑁𝑘𝐵𝑇/𝑇𝐹 

𝑇𝐹 =
𝜖𝐹

𝑘𝐵
=

1
2 𝑚𝑣𝐹

2

𝑘𝐵
 

𝐶𝑒𝑙 =
𝜋2𝑁𝑘𝐵

2𝑇

𝑚𝑣𝐹
2  

This is the total heat capacity, and we need to divide by a factor of V to get the heat capacity per volume 

𝐶 =
𝜋2𝑛𝑘𝐵

2𝑇

𝑚𝑣𝐹
2  

Plugging this in to the expression for the thermal conductivity coefficient: 



𝐾𝑒𝑙 =
𝜋2𝑛𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠𝑘𝐵

2𝑇

3𝑚𝑣𝐹
2 𝑣𝐹ℓ 

Compare this to the phonon thermal conductivity at low temperature (when ℓ does not depend on 

temperature) 

𝐾𝑝ℎ =
4𝜋4

5
𝑛𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠𝑘𝐵 (

𝑇

𝜃
)

3

𝑣𝑠ℓ 

And the phonon thermal conductivity at high temperature when C does not depend on T, but ℓ ∝ ~1/𝑇 

𝐾𝑝ℎ ∝ 𝑛𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠𝑘𝐵𝑣𝑠/𝑇 

Or the high-temperature phonon thermal conductivity in the “dirty limit” when impurities set ℓ (average 

impurity distance is given the symbol D), rather than phonon-phonon scattering setting ℓ 

𝐾𝑝ℎ = 3𝑛𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠𝑘𝐵𝐷 

We can further express the electronic thermal conductivity in terms of the mean scattering time 𝜏 =

ℓ/𝑣𝐹 

𝐾𝑒𝑙 =
𝜋2𝑛𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠𝑘𝐵

2𝑇𝜏

3𝑚
 

It turns out that in pure/clean metals, electrons are more effective at transporting heat than phonons, 

but in metals with many impurities, the two types of thermal conductivity are comparable. 

𝐾𝑡𝑜𝑡𝑎𝑙 = 𝐾𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 + 𝐾𝑝ℎ𝑜𝑛𝑜𝑛 

Wiedemann-Franz law 

Since the same electrons carry both electric current and heat, there is an expected ratio between 

thermal conductivity and electrical conductivity: 

𝐾

𝜎
=

𝜋2𝑘𝐵
2𝑇𝑛𝜏/3𝑚

𝑛𝑒2𝜏/𝑚
=

𝜋2

3
(

𝑘𝐵

𝑒
)

2

𝑇 

Interestingly, materials’ dependent parameters such as 𝜏 , n, and m drop out of this ratio. 

The Lorentz number L is defined as 

𝐿 =
𝐾

𝜎𝑇
=

𝜋2

3
(

𝑘𝐵

𝑒
)

2

= 2.45 × 10−8𝑊𝑎𝑡𝑡 Ω/K2 

Most simple metals have values of L roughly in this range (see table 6.5 in textbook) 

The Wiedemann-Franz law is a very useful metric in contemporary research for assessing how much an 

exotic material behaves like a ‘simple’ or ‘textbook’ metal which is expected to follow W-F law.  

Deviation from W-F law in temperature regimes where it should apply are used as evidence that a given 

material has ‘abnormal’ behavior. 

Example: thermoelectrics 



Thermoelectrics are materials that can convert waste heat into electricity (and vis versa: use a voltage to 

affect a temperature change), and they are defined by a figure of merit ZT.  The larger ZT, the better, but 

most of the best thermoelectrics have ZT~1-2. 

𝑍𝑇 =
𝜎𝑆2𝑇

Κ
 

Where S is the Seebeck coefficient.  This is a materials property which describes the degree to which a 

temperature gradient produces an electric potential: 𝑆 = −Δ𝑉/Δ𝑇 

𝜎 is the electrical conductivity and K is the thermal conductivity.  According to the equation above, one 

can increase ZT for a given material (fixed S) by increasing 𝜎 or decreasing 𝐾. 

But as we learned in the previous section, electrons carry both charge and heat, and there is a specific 

ratio between the two, so there is no way to simultaneously raise one and lower the other. 

A trick that people often employ is manipulating the phonon thermal conductivity. 

𝐾𝑡𝑜𝑡𝑎𝑙 = 𝐾𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 + 𝐾𝑝ℎ𝑜𝑛𝑜𝑛 

For example, by creating nanostructured materials (small D; phonons scatter off the boundaries and 

have difficulty conducting heat), people can suppress the phonon contribution to thermal conductivity  

𝐾𝑝ℎ = 3𝑛𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠𝑘𝐵𝐷 

Without hurting electrical conductivity too much. 

The other option to make a small D determine phonon thermal conductivity is to put in a bunch of 

impurities, but that can negatively affect electrical conductivity (by producing a small 𝜏) and degrade the 

figure of merit. 

 

 

 

 

 

 


