
Lecture 18: review 

 Content on Final 

 Review of last two chapters 

 Questions for the class 

 Derivations you should be able to reproduce,  understand, and apply to new systems 

 Reminder: same office hours, or just stop by my office when the door is open to discuss exam 

prep 

Since the midterm, we have covered Ch 3-6 in the textbook and this will be the focus of the final.  

However, some of these concepts do have prerequisites in Ch 1-2.  For example, when we derive 

properties of the phonon and electron gas, we usually need information about the number of atoms in 

the basis.  And the concept of a brillouin zone, for which you need to know what a reciprocal lattice is, 

comes into play when we treat lattice vibrations as quantum particles.  Moreover, the final will focus on 

the last two chapters we covered—5 and 6—because these are concepts that are used heavily in solid 

state physics research and are strong prerequisites for next quarter.  That doesn’t mean that Chs 3-4 will 

not be on the exam, but they will not be emphasized as much. 

Below is a flow chart of the topics we covered in chapters 3-6 and why: 



 

The table below summarizes some of the key aspects of a phonon gas (Ch 5) and a Fermi gas (Ch 6) 

 Classical gas 
(molecules) 

Phonon gas Fermi gas 

Number fixed Population depends on 
frequency of mode and 
temperature: 

〈𝑛〉 =
1

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1 
 

(What are the limits of this 
expression for very small T and 
for very large T)? 

Small T: 𝑒ℏ𝜔/𝑘𝐵𝑇 ≫ 1 →

〈𝑛〉~𝑒−ℏ𝜔/𝑘𝐵𝑇 

Large T: 𝑒
ℏ𝜔

𝑘𝐵𝑇~1 +
ℏ𝜔

𝑘𝐵𝑇
 

〈𝑛〉~𝑘𝐵𝑇/ℏ𝜔 

fixed 

•Crystal binding 
and atomic 
potentials

•Connection 
between stress 
and strain 
(elastic stiffness)

•Elastic waves in 
continuous solids

Why: microscopic 
origin of 'masses 

on springs' model; 
begin to introduce 

formalism of 
waves 

propagating 
through solid: and 
show that crystal 
symmetries affect 

this

•Elastic Waves in 
discrete solid, as 
modeled by masses 
on springs

•Dispersion relations: 
energy vs frequency; 
group velocity

•Acoustic and optical 
branches

Why: a real solid 
consists of discrete 

atoms, and 
interatomic forces 

are the cause of 
elastic stiffness; 

Dispersion relations 
are a crucial starting 

point for applying 
quantum properties 
of lattice vibrations

•Lattice vibrations 
as quantized 
bosonic particles

•Applications  to 
heat capacity and 
thermal 
conductivity 
(primarily using 
Debye model)

•occupation 
number from 
Planck 
distributions

Why: this is the 
foundation for 
understanding 

materials' response to 
any non-

electromagnetic 
stimulus 

(temperature, 
impulse)

•gas of free fermions

•Fermi (-Dirac 
function, sphere, 
velocity, 
momentum, 
energy)

•Applications to 
electrical 
conductivity, hall 
conductivity, and 
thermal 
conductivity

why: electrons are 
important in most 
materials and this 

formalism describes 
their quantum nature; 
can be directly applied 

to monovalent materials 
like Cu, and can be used 

with minor 
modifications to 

describe many metals 
and semiconductors



Type of particle Point-like boson Fermion; not 
necessarily charged 
(but electrons have 
charge, obviously) 

Relationship between 
energy and 
momentum 

𝐾𝐸 = 𝑝2/2𝑚 
For each particle 

Depends on which branch you 
are considering (see chapter 4), 
but for acoustic phonons near 
k=0, 𝜔~𝑣𝑠𝑘 where k is crystal 
momentum and 𝑣𝑠 is speed of 
sound 

𝜖𝑘 = ℏ2𝑘2/2𝑚 
For free or nearly free 
electrons 

Effect of temperature Increases the 
mean kinetic 
energy of 
particles 
(Maxwell-
boltzmann 
distribution) 

Occupation number of phonon 
modes with a given frequency 
increases 

Fermi-dirac function;  
occupation 
probability just below 
or just above the 
Fermi energy is no 
longer simply 1 or 0, 
but it can be some 
fractional falue in 
between these 
numbers 

Relationship between 
temperature and 
total internal energy 

For an N-particle 
gas 

𝑈 = 3𝑁𝑘𝐵𝑇 

𝑈 = ∑ ∑ < 𝑛𝐾,𝑝 > ℏ𝜔𝐾,𝑝𝑝𝐾 = 

= ∑ ∑
ℏ𝜔𝐾,𝑝

𝑒ℏ𝜔𝐾,𝑝/𝑘𝐵𝑇 − 1
𝑝𝐾

 

The total kinetic 
energy of electrons at 
any temperature is 
given by: 
𝑈

= ∫ 𝑑𝐸 𝐸 𝐷(𝐸)𝑓(𝐸)
∞

0

 

Where D(E) is the 
density of states and 
f(E) is the Fermi-Dirac 
function, which 
encodes temperature 
effects 

Density of states 
4𝜋

𝑉

ℎ3
𝑝2 

Where ℎ3 is 
volume in phase 
space 

𝐷(𝜔) =
𝑑𝑁

𝑑𝜔
=

𝑑𝑁

𝑑𝑘

𝑑𝑘

𝑑𝜔
 

In 3D: 𝐷(𝜔) = ∑
𝐾(𝜔)2𝑉

2𝜋2

𝑑𝐾

𝑑𝜔𝑝
𝑝  

Where the sum is taken over all 
phonon branches 
(polarizations, p) 

𝐷(𝐸) =
𝑑𝑁

𝑑𝐸
=

𝑑𝑁

𝑑𝑘

𝑑𝑘

𝑑𝐸
 

In 3D: 𝐷(𝐸) =
𝑉

2𝜋2 (
2𝑚

ℏ2 )
3/2

𝐸1/2 

Collisions Molecules collide 
with each other 
and with walls of 
vessel 

Phonons collide with each 
other, with surface of crystal, 
and with impurities 

In this course, we 
discussed electrons 
colliding with 
phonons and with 
impurities 

Particles can be used 
to transport 

heat heat Charge (if they are 
charged particles) and 
heat 



Energy conserved in 
collisions? 

Yes Yes yes 

Momentum 
conserved in 
collisions? 

Yes, except for at 
walls 

Yes, modulo a reciprocal lattice 
vector G 

Yes, modulo a 
reciprocal lattice 
vector G 

Number of particles 
conserved in 
collision? 

Yes No Yes 

 

Questions for class (answers at end of this set of lecture notes): 

1. What can this formalism of a free electron gas apply to? 

2. What is the general procedure for finding a density of states?  

3. When do we use density of states?  

4. Thermal conductivity: what are intuitive explanations for why each term is included? (𝐾 =
1

3
𝐶𝑣ℓ) 

5. Electrical conductivity: intuitive explanation for various terms (𝜎 =
𝑛𝑒2𝜏

𝑚
) 

6. Why are we justified in modeling a crystal lattice as masses connected by springs for the 

purposes of deriving dispersion relations of elastic waves?  

7. If I give you an atomic potential energy, 𝑈(𝑟) = 𝑓(𝑟), how do you find a spring constant 

from this? 

8. Phonons: what is an intuitive connection between dispersion relations and density of 

states?  

9. Phonons: how many phonon modes are there for a D dimensional crystal with p atoms 

in the basis and why?  

10. Why are only electrons close to the fermi energy relevant for thermal and transport 

properties of free electron gas ? 

11. What is a dispersion relation and what is it useful for ? 

12. What is the first brillouin zone and what is its significance for the topics we discussed in 

this part of the course ? 

Derivations that you should be able to reproduce: 

 Dispersion relations for elastic waves in solids from masses-on-springs model 

 Density of states for phonon and fermion gas in any dimension 

 Aggregate properties of phonon gas (for example, but not limited to, total internal 

energy) 

 Fermi-anything in arbitrary gas of free fermions (e.g. Fermi energy, fermi momentum, 

fermi velocity, density of states at fermi energy) 

 Also, you should aim to understand the ‘practical’ applications of the concepts we have 

covered so far: thermal conduction, electrical conduction, stress/strain relationships 



Hint: try to explain what you are doing at every step and why, so that you can apply it to an 

arbitrary system 

Answers to questions: 

1. electrons in a metal, liquid helium 3 or some other condensate of fermions, neutron star 

2. # of particle=(Volume of sphere in k-space with radius k)/(size of each box); use dispersion 

relation to solve for energy or frequency as a function of k, and take derivative of N wrt to 

energy or frequency 

3. when we want to do an integral over energy to determine collective properties of a phonon or 

electron gas; the density of states tells us how many states are contained in each energy slice 

4. Thermal conductivity: 

a. K describes the effectiveness of transmitting heat from one side of a specimen to 

another 

b. ℓ is a mean free path between phonon scattering events; when a phonon scatters it 

loses information about what direction it was moving, and this inhibits the transport of 

heat) 

c. 𝑣 is the velocity that phonons travel at between scattering events, typically the speed of 

sound; faster velocity means that a phonon can get to the cooler side of the sample 

faster 

d. 𝐶 is the heat capacity per volume; it is included because the process of heat transfer is 

identical to the process of heating up a portion of the specimen some distance away 

5. Electrical conductivity describes the ease of transmitting charge from one end of the 

specimen to the other (note: this real space picture will not work for a more 

sophisticated treatment of electrical conduction).  Larger 𝜏 corresponds to higher 

conductivity because it gives electrons more travel time between scattering events.  

Larger n corresponds to higher conductivity because more electrons can transport the 

same amount of charge in a faster amount of time 

6. interatomic potential is roughly quadratic for small displacements from minimum 

7. take 1st deriv and set to zero to get equilibrium separation, take 2nd derivative and plug 

in result from previous step, if needed 

8. density of states, is sort of an integral over momentum of the dispersion relations; for 

every momentum, you count how many ‘boxes’—quantized energy values originating 

from quantized momentum values—you encounter 

9. There are Dp total phonon modes, because each atom in the basis can move 

independently in D dimensions; D of these phonon modes are acoustic, and the 

remaining D(p-1) are optical 

10. energy can be transported by electrons that can be promoted to a higher energy state.  

The temperature sets a rough value for Δ𝐸 that an electron can acquire.  For an electron 

buried deep inside the Fermi sphere, a thermal energy kick can only promote it to an 

energy that is already occupied by other electrons 

11. Energy vs k or frequency vs k; used to calculate group velocity and density of states.  

Group velocity sets the maximum speed at which a particle can transmit ‘information.’; 



density of states is important for determining all aggregate properties of Fermi and Bose 

gas 

12. Wigner-Seitz cell in momentum space; uniquely defines phonon dispersion; any larger K 

can be translated back to first BZ by reciprocal lattice vector G 


