
Lecture notes 3 

HW 1 posted 

Check that TA office hrs (Thurs 10-11am) work 

Review key points of previous lectures: 

 Primitive translation vectors 

  
In a primitive lattice, every point can be accessed by: 

-2 translation vectors in 2D: 𝑻 = 𝑢1𝒂𝟏 + 𝑢2𝒂𝟐 

-3 translation vectors in 3D: = 𝑢1𝒂𝟏 + 𝑢2𝒂𝟐 + 𝑢3𝒂𝟑 

Where 𝑢1,2,3 are integers 

Roadmap: Define reciprocal lattice and practice using itsome physical intuition for reciprocal 

latticeApplication of reciprocal lattice: formalism for understanding diffraction beyond Bragg’s 

lawMaking this formalism useful for all materials: using structure factor to account for diffraction 

from lattice + basis 

 

Definition of reciprocal lattice vectors 

The primitive translation vectors 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 represent the direct lattice. 

The reciprocal lattice vectors, 𝒃𝟏, 𝒃𝟐, 𝒃𝟑, are defined as follows: 

𝒃𝟏 = 2𝜋
𝒂𝟐 × 𝒂𝟑

𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑
 

𝒃𝟐 = 2𝜋
𝒂𝟑 × 𝒂𝟏

𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑
 



𝒃𝟑 = 2𝜋
𝒂𝟏 × 𝒂𝟐

𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑
 

 

 The denominator of all three is a scalar which gives the volume of the primitive cell: 𝑉𝑐 = |𝒂𝟏 ∙

𝒂𝟐 × 𝒂𝟑| 

 If a primitive lattice vector is mutually orthogonal to the other two, its reciprocal lattice vector 

will point in the same direction.  If all three primitive lattice vectors of the direct lattice are 

mutually orthogonal, the reciprocal lattice vectors will all point in the same direction as the 

direct lattice vectors. 

if 𝒂𝒊 ∙ 𝐚𝐣 = 𝛿𝒊,𝒋 for both values of j, 𝒂𝒊||𝒃𝒊 

 If primitive lattice vectors are all mutually orthogonal, the reciprocal lattice vectors point in the 

same direction at the direct lattice vectors but have a magnitude 2𝜋/|𝒂𝒊| 

 Generalization of the previous two statements: 𝒃𝒊 ∙ 𝒂𝒋 = 2𝜋𝛿𝑖,𝑗  where 𝛿𝑖,𝑗 = 1 if i=j and 𝛿𝑖,𝑗 = 0 

if 𝑖 ≠ 𝑗       

 Example 1: orthorhombic lattice system 

An orthorhombic lattice is comprised of rectangular prism cells with all edges of unequal length.  The 

direct lattice vectors are: 

𝒂𝟏 = 𝑎�̂� 

𝒂𝟐 = 𝑏�̂� 

𝒂𝟑 = 𝑐�̂� 

Where 𝑎 ≠ 𝑏 ≠ 𝑐 

 𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑 = 𝑎𝑏𝑐 

 𝒂𝟐 × 𝒂𝟑 = 𝑏𝑐�̂� 

 𝒂𝟑 × 𝒂𝟏 = 𝑎𝑐�̂� 

 𝒂𝟏 × 𝒂𝟐 = 𝑎𝑏�̂� 

𝒃𝟏 =
2𝜋

𝑎
�̂� 

𝒃𝟐 =
2𝜋

𝑏
�̂� 

𝒃𝟑 =
2𝜋

𝑐
�̂� 

For cubic, tetragonal, and orthorhombic primitive lattices, reciprocal lattice vectors are 

straightforward to compute—they are in the same direction as the corresponding direct lattice 

vector with a magnitude given by 2𝜋/|𝒂𝒊|.  This is not true for crystal lattice systems in which 

the primitive lattices are not mutually orthogonal. 

Example 2: Body-centered cubic 



 

The primitive lattice vectors of a BCC crystal system are shown by the arrows in this figure from your 

textbook.  They consist of three vectors emanating from the corner of the unit cell and going to the 

body-center position in three adjacent cells (one can also write an equivalent vector starting at the 

body-centered position and going to three corners of the same cell).  Using the definitions of the x,y,z 

directions from this figure (note: if you define x,y,z to be different directions, the vectors you wind up 

with won’t be exactly the same as below, but they will be equivalent; always show what you define as 

x,y,z in you HW and exams), the expressions for these primitive vectors are: 

𝒂𝟏 =
𝑎

2
(−�̂� + �̂� + �̂�) 

𝒂𝟐 =
𝑎

2
(�̂� − �̂� + �̂�) 

𝒂𝟑 =
𝑎

2
(�̂� + �̂� − �̂�) 

Question: are these three vectors orthogonal?  

Answer: no; e.g. 𝒂𝟏 ∙ 𝒂𝟐 =
𝑎

2
(−1 − 1 + 1) = −𝑎/2 ≠ 0 

Now let’s calculate the reciprocal lattice vectors. 

Step 1: calculate denominator, which is common to all three reciprocal lattice vectors: 

𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑 

𝒂𝟐 × 𝒂𝟑 =
𝑎2

4
|
�̂� �̂� �̂�
1 −1 1
1 1 −1

| =
𝑎2

4
[�̂�(1 − 1) − �̂�(−1 − 1) + �̂�(1 + 1)] =

𝑎2

2
[�̂� + �̂�] 

𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑 = (
𝑎

2
(−�̂� + �̂� + �̂�)) ∙ (

𝑎2

2
[�̂� + �̂�]) =

𝑎3

4
(0 + 1 + 1) =

1

2
𝑎3  

Step 2: calculate the numerators for all three reciprocal lattice vectors: 

𝒃𝟏 ∝ 𝒂𝟐 × 𝒂𝟑 =
𝑎2

2
[�̂� + �̂�] 



𝒃𝟐 ∝ 𝒂𝟑 × 𝒂𝟏 =
𝑎2

4
|
�̂� �̂� �̂�
1 1 −1

−1 1 1
| =

𝑎2

4
[�̂�(1 + 1) − �̂�(1 − 1) + �̂�(1 + 1)] =

𝑎2

2
[�̂� + �̂�] 

𝒃𝟑 ∝ 𝒂𝟏 × 𝒂𝟐 =
𝑎2

4
|
�̂� �̂� �̂�
−1 1 1
1 −1 1

| =
𝑎2

4
[�̂�(1 + 1) − �̂�(−1 − 1) + �̂�(1 − 1)] =

𝑎2

2
[�̂� + �̂�] 

Step 3: put it all together 

𝒃𝟏 = 2𝜋 ∙
2

𝑎3
∙
𝑎2

2
[�̂� + �̂�] =

2𝜋

𝑎
[�̂� + �̂�] 

𝒃𝟐 = 2𝜋 ∙
2

𝑎3
∙
𝑎2

2
[�̂� + �̂�] =

2𝜋

𝑎
[�̂� + �̂�] 

𝒃𝟑 = 2𝜋 ∙
2

𝑎3
∙
𝑎2

2
[�̂� + �̂�] =

2𝜋

𝑎
[�̂� + �̂�] 

Step 4: check your answer.  Make sure that 𝒃𝒊 ∙ 𝒂𝒋 = 2𝜋𝛿𝑖,𝑗 

(only i=1; j=1,2 is shown below) 

𝒃𝟏 ∙ 𝒂𝟏 =
2𝜋

𝑎
[�̂� + �̂�] ∙

𝑎

2
(−�̂� + �̂� + �̂�) = 𝜋(0 + 1 + 1) = 2𝜋 

𝒃𝟐 ∙ 𝒂𝟏 =
2𝜋

𝑎
[�̂� + �̂�] ∙

𝑎

2
(−�̂� + �̂� + �̂�) = 𝜋(−1 + 0 + 1) = 0 

 

The reciprocal lattice is also a lattice (and if the direct lattice is primitive, then so is the reciprocal), and 

points in reciprocal space are mapped out by the set of vectors: 

𝑮 = 𝜈1𝒃𝟏 + 𝜈2𝒃𝟐 + 𝜈3𝒃𝟑 

Where 𝜈1, 𝜈2, 𝜈3 are integers. 

 

Reciprocal lattice and fourier series 

Now that we know what the reciprocal lattice vectors are, lets get some physical intuition behind them.  

A crystal is composed of infinitely repeating unit cells (unit cell = basis of one or more atoms attached to 

a lattice point).  A crystal is invariant under translation of the form 𝑻 = 𝑢1𝒂𝟏 + 𝑢2𝒂𝟐 + 𝑢3𝒂𝟑 where 

𝑢1, 𝑢2, 𝑢3 are integers and 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 are the lattice vectors.  This is another way of saying that every 

unit cell is identical to every other unit cell.  Although we have only been discussing nuclei thus far in the 

class, when we introduce electrons back into the picture, their arrangement and behavior will be 

directly affected by the underlying periodicity of the nuclei.  The purpose of this chapter is to further 

develop the formalism for studying these infinitely periodic structures, and explore one of its most 

important applications—diffraction. 



When we think of a periodic structure, whether it be a sine wave, a square wave, or some other more 

complicated shape which repeats with period a, we should immediately think of a fourier transform or a 

fourier series.   

The example of Fourier transforms that we encounter most often in our everyday life is in music.  We 

physically experience a given note in the time domain as an alternating compressions and 

decompression of the air near our ear, but we define a note by its frequency (e.g. 440 Hz).  Similarly, we 

have been talking about the repetition of a crystal lattice in real space, but this redundancy is accounted 

for when we fourier transform to momentum space or(also known as) reciprocal space. 

Let’s consider the lattice (no basis), which mathematically is represented by a series of delta functions. 

In this portion of the lecture, I deviate from Kittel’s presentation a bit, and will post a scan of another 

book (structure and Dynamics, but Martin T. Dove). 

Only consider a one dimensional lattice at first, with spacing a between lattice points. 

 

This structure can be written as: 𝐿(𝑥) = ∑ 𝛿(𝑥 − 𝑢1𝑎)𝑢1
 , where u1 is an integer 

The Fourier transform of this is given by: 

𝑅(𝑞) = ∫ 𝑒𝑖𝑞𝑥𝐿(𝑥)𝑑𝑥
∞

−∞

 

= ∑∫ 𝑒𝑖𝑞𝑥𝛿(𝑥 − 𝑢1𝑎)𝑑𝑥
∞

− ∞𝑢1

 

Aside: generally, the FT of a delta function is given by ∫ 𝑒𝑖𝑞𝑥𝛿(𝑥 − 𝑥0)𝑑𝑥 = 𝑒𝑖𝑞𝑥0
∞

− ∞
 

Also, the FT is often expressed with a factor of 2pi in the exponent, but we will account for that later 

= ∑𝑒𝑖𝑞𝑢1𝑎

𝑢1

= ∑cos(𝑞𝑢1𝑎) + 𝑖𝑠𝑖𝑛(𝑞𝑢1𝑎)

𝑢1

 

Simplification: we only need to keep the cosine term because the sum goes over positive and negative 

values of u1 and sin(−𝑥) = −sin (𝑥) 

𝑅(𝑞) = ∑cos(𝑞𝑢1𝑎)

𝑢1

 

For arbitrary values of q, this sum will tend to zero as the number of terms goes to infinity.  This can only 

be avoided if specific values of q are chosen: 



𝑞 = integer ×
2𝜋

𝑎
 

This gives a 1 dimensional lattice with points separated by 2𝜋/𝑎.  This is the reciprocal lattice. 

 

This can be generalized to three dimensions: 

𝐿(�⃑� ) = ∑ 𝛿(𝒓 − (𝑢1𝒂𝟏 + 𝑢2𝒂𝟐 + 𝑢3𝒂𝟑))

𝑢1,𝑢2,𝑢3

 

Where 𝑢1, 𝑢2, 𝑢3 are integers and 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 are lattice vectors which span 3D space 

Take the Fourier transform again same as in 1D: 

𝑅(𝒌) = ∑ 𝑐𝑜𝑠(𝒌 ∙ (𝑢1𝒂𝟏 + 𝑢2𝒂𝟐 + 𝑢1𝒂𝟏))𝑢1,𝑢2,𝑢3
 

Again, the sum will generally be non-zero only if k is a reciprocal lattice vector R(k)  

𝒌 = 𝑘1𝒃𝟏 + 𝑘2𝒃𝟐 + 𝑘3𝒃𝟑 

Thus, one physical interpretation of the reciprocal lattice is that it is the Fourier transform of the direct 

lattice, a mathematical operation which takes into account the repetition of the crystal lattice 

 

2nd intuition: reciprocal lattice vectors as specific plane wave states 

Consider a set of points R constituting a bravais lattice and a generic plane wave 𝑒𝑖𝒌∙𝒓 

For a general value of k, such a plane wave will not have the periodicity of the lattice, but for a certain 

choice of k, it will: 

The set of all wavevectors K which yields plane waves with the periodicity of the lattice is known as the 

reciprocal lattice 

The way to state this mathematically, is that the following expression applies for all spatial coordinates r 

(why? Because the R vector is defined as a translation operation which leaves the lattice invariant): 

𝑒𝑖𝑲∙(𝒓+𝑹) = 𝑒𝑖𝑲∙𝒓 

𝑒𝑖𝑲∙𝑹 = 1 



This expression holds if 𝑲 ∙ 𝑹 is an integer multiple of 2𝜋, which we showed in the exercise above 

 

 


