
Lecture 5:  

 Overflow from last lecture: Ewald construction and Brillouin zones 

 Structure factor 

Review 

Consider direct lattice defined by vectors 𝑹 = 𝑢1𝒂𝟏 + 𝑢2𝒂𝟐 + 𝑢3𝒂𝟑 where 𝑢1, 𝑢2, 𝑢3 are integers and 

𝒂𝟏, 𝒂𝟐, 𝒂𝟑 are primitive translation vectors 

The reciprocal lattice is defined by (primitive) vectors 𝒃𝟏, 𝒃𝟐, 𝒃𝟑 defined in the following way: 

𝒃𝟏 = 2𝜋
𝒂𝟐 × 𝒂𝟑

𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑
 

𝒃𝟐 = 2𝜋
𝒂𝟑 × 𝒂𝟏

𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑
 

𝒃𝟑 = 2𝜋
𝒂𝟏 × 𝒂𝟐

𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑
 

The reciprocal lattice is also a lattice, with all points accessed by reciprocal lattice vector  

𝑮 = 𝜈1𝒃𝟏 + 𝜈2𝒃𝟐 + 𝜈3𝒃𝟑 

Where 𝜈1, 𝜈2, 𝜈3 are integers 

Another important property of the reciprocal lattice is that 𝑹 ∙ 𝑮 = 2𝜋𝑛 where n is an integer.   

One important application of the reciprocal lattice is diffraction—a type of experiment used to determine 

the repeating structure of a crystal by shining x-rays, neutrons, or electrons onto the crystal and 

investigating how much the beam is deflected.  In previous courses, you might have seen the Bragg forula 

for diffraction:  

2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆 

Where n is an integer, 𝜆 is the wavelength of light (or debroglie wavelength of particles), and d is the 

spacing between identical crystal planes.  Any crystal can be subdivided into planes (containing atoms) in 

several different ways. 

There is another way to express this same formula using the reciprocal lattice.  If a plane wave with 

wavevector k  is incident on the crystal (~𝑒𝑖𝒌∙𝒓 )and the outgoing wave has wavevector k’ (~𝑒𝑖𝒌′∙𝒓 ), a 

diffraction peak will be seen only if 𝒌′ − 𝒌 = 𝑮 

We can also use the reciprocal lattice to find spacting between identical lattice planes more easily. 

If we have a plane described by miller indices (hkl) 

It turns out that 𝑑(ℎ𝑘𝑙) = 2𝜋/|𝑮| where 𝑮 = ℎ𝒃𝟏 + 𝑘𝒃𝟐 + 𝑙𝒃𝟑.   It also turns out that 𝑮ℎ𝑘𝑙 is  normal to 

the plane described by the (hkl) miller index 

Ewald construction  



The Ewald construction is a way of visualizing a diffraction experiment, and also illustrating that 

reciprocal space is an empty space.  

1. Draw reciprocal lattice  

2. Pick a point at the origin and draw the wavevector of the incident beam, k, the outgoing beam, 

k’, and their difference, Δ𝑘  

3. Remember, if Δ𝑘 = 𝑮 (a reciprocal lattice vector), we will get constructed interference and a 

finite diffraction signal  

4. The vectors k and k’ define a sphere, the Ewald sphere.  If this sphere intersects another point 

on the reciprocal lattice, the laue condition (stated in step 3) will apply.  However, this is very 

difficult to accomplish just by chance because the reciprocal lattice is mainly empty space.  

5. There are three ways to get around this difficulty  

 

  

Note: in the image above the difference between k and k’ is called K, but in the rest of these notes it is 

called G  

Method 1: rotate the crystal  

(The direct lattice is defined relative to the crystal, so when we rotate the crystal, we rotate the direct 

lattice, and hence we rotate the reciprocal lattice)  



  
Method 2: use polychromatic x-rays (e.g. white light) so that many values of k are incorportated.  This is 

called the Laue method, and it is frequently used to find the orientation of single crystal specimens.  

  

Method 3: powder diffraction.  This method uses monochromatic x-rays, but instead of studying a large 

single crystal it studies a powder—a collection of many many microscopic crystals oriented in random 

directions.  From the standpoint of solid state physics, a microscopic crystal is effectively infinite because 



it has so many unit cells that the boundaries do not change the properties much.  For a given incidence 

angle on this powder, 𝜃, there might be a crystallite that has the correct orientation of crystal planes to 

produce a diffraction signal.  As 𝜃 is varied, one picks up all of the possible crystal-plane spacings (d) in 

that crystal.  The series of peaks from a powder diffraction experiment gives the ‘fingerprint’ of a 

material.  

    

Laue pattern of NaCl (table salt) single crystal along 4-fold symmetric axis  

  

    

Powder x-ray diffraction pattern of NaCl  



  

    

Brillouin zones  

For a direct primitive lattice, there is often more than one way to define a primitive cell (the 

parallelogram defined by vectors which can be used to access every point in the lattice).  One way to do 

this (this is a HW question) is the Wigner-Seitz cell, which is defined by the following procedure:  

1. Pick one lattice point and draw lines to connect this to all nearby lattice points  

2. Draw perpendicular bisectors through all of these lines  

3. The shape formed from the intersection of the perpendicular bisectors is the 

Wigner-Seitz cell  

  



When this same procedure is done for the reciprocal lattice the name of the cell is the first Brillouin 

zone.  This concept will become important in later chapters when we add electrons into the picture. The 

Brillouin zone contains all of the wavevectors which can be Bragg reflected by the crystal. 

Structure factor 

The final piece for using what we have learned about the reciprocal lattice and diffraction to learn about 

the repeating periodic structure of crystalline solids is including the basis.  Thus far, we have only been 

considering the lattice, but as we learned in chapter 1, a unit cell in a crystal consists of a lattice and a 

basis. 

Consider a crystal of identical unit cells, each with electron density inside them given by n(r), which is a 

function of position inside the cell (later we will substitute atomic positions in there). 

We are shining an x-ray plane wave at this crystal with wavefunction 𝑒𝑖𝒌∙𝒓and measuring a diffracted 

beam with wavefunction 𝑒𝑖𝒌′∙𝒓, where |k|=|k’|.  Also, we are getting a diffraction signal, so 𝒌 − 𝒌′ = 𝑮 

where G is a vector of the reciprocal lattice. 

The diffraction amplitude for N unit cells may be given by N multiplied by the diffraction amplitude for a 

single cell: 

𝐹𝑮 = 𝑁 ∫ 𝑑𝑉
𝑐𝑒𝑙𝑙

𝑛(𝒓)𝑒−𝑖𝑮∙𝒓 = 𝑁𝑆𝑮 

What this integral physically does is it considers every position r inside the unit cell and introduces a 

phase delay from that infinitesimal volume element.  We are considering a specific G, so the sum over all 

possible G’s (last lecture) is omitted. 

𝑆𝑮 is the structure factor. 

n(r) can be decomposed into contributions from every atom inside the unit cell.  For convenience, we 

always put one of the atoms at the origin.   

𝑛(𝒓) = ∑ 𝑛𝑗(𝒓 − 𝒓𝒋)𝒔
𝑗=1 , where there are s atoms in the basis 

Plug this into the expression for the structure factor above 

𝑆𝑮 = ∑ ∫ 𝑑𝑉𝑛𝑗(𝒓 − 𝒓𝒋)𝑒−𝑖𝑮∙𝒓

𝑠

𝑗=1

 

= ∑ ∫ 𝑑𝑉𝑛𝑗(𝒓 − 𝒓𝒋)𝑒−𝑖𝑮∙(𝒓−𝒓𝒋)𝑒−𝑖𝑮∙𝒓𝒋

𝑠

𝑗=1

 

Define a new variable 𝝆 = 𝒓 − 𝒓𝒋 

𝑆𝑮 = ∑ 𝑒−𝑖𝑮∙𝒓𝒋 ∫ 𝑑𝑉𝑛𝑗(𝒓 − 𝒓𝒋)𝑒−𝑖𝑮∙(𝒓−𝒓𝒋)

𝑠

𝑗=1

 



∑ 𝑒−𝑖𝑮∙𝒓𝒋 ∫ 𝑑𝑉𝑛𝑗(𝝆)𝑒−𝑖𝑮∙𝝆

𝑠

𝑗=1

 

Define the atomic form factor 𝑓𝑗 = ∫ 𝑑𝑉𝑛𝑗(𝝆)𝑒−𝑖𝑮∙𝝆.  This number represents the scattering power of 

the j-th atom in the cell.  It will be equal for two atoms of the same type (e.g. two sodium atoms at two 

different positions in a unit cell).  It will also depend on what exactly is being scattered—x-rays, 

neutrons, or electrons. 

𝑆𝑮 = ∑ 𝑓𝑗𝑒−𝑖𝑮∙𝒓𝒋

𝑠

𝑗=1

 

The scattering intensity is proportional to |𝑆𝑮|2 so it is ok if 𝑆𝐺 is not real. 

In terms of primitive lattice vectors, the positions of each of the atoms in the basis is given by: 

𝒓𝒋 = 𝑥𝑗𝒂𝟏 + 𝑦𝑗𝒂𝟐 + 𝑧𝑗𝒂𝟑 where 𝑥𝑗, 𝑦𝑗 , 𝑧𝑗 are fractional 

𝑮 ∙ 𝒓𝒋 = (𝜈1𝒃𝟏 + 𝜈2𝒃𝟐 + 𝜈3𝒃𝟑) ∙ (𝑥𝑗𝒂𝟏 + 𝑦𝑗𝒂𝟐 + 𝑧𝑗𝒂𝟑) 

= 2𝜋(𝜈1𝑥𝑗 + 𝜈2𝑦𝑗 + 𝜈3𝑧𝑗) 

𝑆𝑮(𝜈1𝜈2𝜈3) = ∑ 𝑓𝑗𝑒−2𝜋𝑖(𝜈1𝑥𝑗+𝜈2𝑦𝑗+𝜈3𝑧𝑗)

𝑠

𝑗=1

 

 

Practice—Structure factor of BCC lattice. 

For this exercise, we will use the conventional cubic unit cell of the BCC lattice, which as 2 atoms per 

basis. 

Atom 1: 𝒓𝟏 = 𝟎 

Atom 2: 𝒓𝟐 =
1

2
𝑎�̂� +

1

2
𝑎�̂� +

1

2
𝑎�̂� 

𝑆𝑮(𝜈1𝜈2𝜈3) = ∑ 𝑓𝑗𝑒−2𝜋𝑖(𝜈1𝑥𝑗+𝜈2𝑦𝑗+𝜈3𝑧𝑗)

𝑠

𝑗=1

 

= 𝑓𝑒0 + 𝑓𝑒𝑖𝜋(𝜈1+𝜈2+𝜈3) 

The subscript has been dropped on the f because two identical atoms are used in this exercise, meaning 

they have the same form factor.  The second term can be +f or –f, depending if the integers in the 

exponent add up to a positive or negative number 

𝑆𝐺,𝐵𝐶𝐶(𝜈1𝜈2𝜈3) = {
0 if 𝜈1 + 𝜈2 + 𝜈3 is odd 

2𝑓 if 0 if 𝜈1 + 𝜈2 + 𝜈3 is even
 



According to this calculation, the Bragg peaks from some planes will be missing.  For example, the (100) 

and (111) peaks will be missing (odd sum of 3 miller indices), while (110) and (200) will be present (even 

sum). 

We can try to understand this by considering the primitive lattice of the BCC structure. 

 

𝒂𝟏 =
𝑎

2
(−�̂� + �̂� + �̂�) 

𝒂𝟐 =
𝑎

2
(�̂� − �̂� + �̂�) 

𝒂𝟑 =
𝑎

2
(�̂� + �̂� − �̂�) 

 

Consider the (100) plane, referenced to the conventional unit cell. In terms of the primitive vectors, the 

miller indices would be: 

Intersection coordinates along 𝒂𝟏, 𝒂𝟐, 𝒂𝟑=(-2, 2, 2) 

Inverses: (−
1

2
,

1

2
,

1

2
) 

Miller indices of (100)𝑐𝑢𝑏𝑖𝑐 in terms of primitive translation vectors: (-111) 

But this is equivalent to the (-111) plane which is parallel to the one we were originally considering, but 

located a/2 along the x direction towards the origin.  Thus, when we go to the primitive lattice vectors of 

BCC, we can see that there are no missing Bragg peaks, we just double counted some of them initially by 

using a cell with 2 atoms inside it when 1 would have sufficed. 

Example 2: Structure factor of the face centered cubic lattice 

Again, we consider the conventional unit cell. 



 

Putting the origin at the back left corner and having z point up and y to the right, we have atoms at the 

following fractional coordinates (factor of a is omitted): 

(0,0,0); (
1

2
, 0,

1

2
) ; (0,

1

2
,
1

2
) ; (

1

2
,
1

2
, 0)  

(When atoms are shared with adjacent cells we count only enough of those atoms to get the total 

number contained in one cell.  For example, we counted all of the back corner atom (0,0,0) and left the 

other 7 to other unit cells because there are 8*1/8=1 corner atoms; ditto for the face-centered atoms 

which are each shared with 2 other cells, only count 3 of them) 

The structure factor for the conventional FCC cell is given by: 

𝑆𝐺(𝜈1𝜈2𝜈3) = ∑ 𝑓𝑗𝑒−2𝜋𝑖(𝜈1𝑥𝑗+𝜈2𝑦𝑗+𝜈3𝑧𝑗)

𝑠

𝑗=1

 

= 𝑓[1 + 𝑒−𝑖𝜋(𝜈1+𝜈3) + 𝑒−𝑖𝜋(𝜈2+𝜈3) + 𝑒−𝑖𝜋(𝜈1+𝜈2) 

= {
0 if one index is odd and other two even or if two are odd and one is even

4𝑓 if all indices are odd or all are even
 

Again, the atomic form factor is the same for all terms in our summation because all atoms are identical.  

Similar to what we saw in the BCC lattice, only ¼ of the miller indices in FCC lattices will yield Bragg 

peaks (there are 2 ways to select all odd or all even indices, but 6 ways to select a mixture of odds and 

evens) because the conventional unit cell contains 4 atoms. 

Example 3: NaCl structure 

The NaCl structure can be thought of as two interweaving FCC lattices (one for Na, one for Cl) 



 

To avoid having to write a sum over 8 different terms, let’s express the coordinates in terms of the 

primitive lattice vectors. 

 

Set the origin at the Cl atom in the back left corner (000) 

The fractional coordinate of the Na atom next to it can be expressed as: 
1

2
(𝒂𝟏 + 𝒂𝟑 − 𝒂𝟐) 

𝑮 ∙ 𝒓𝒋 = (𝜈1𝒃𝟏 + 𝜈2𝒃𝟐 + 𝜈3𝒃𝟑) ∙ (𝑥𝑗𝒂𝟏 + 𝑦𝑗𝒂𝟐 + 𝑧𝑗𝒂𝟑) = 2𝜋(𝜈1𝑥𝑗 + 𝜈2𝑦𝑗 + 𝜈3𝑧𝑗) 

Thus, 

𝑆𝑮,𝑁𝑎𝐶𝑙 = 𝑓𝐶𝑙 + 𝑓𝑁𝑎𝑒−𝑖𝜋(𝜈1−𝜈2+𝜈3) 

We cannot make the same simplification as before because the atomic form factors are different, but 

we can make general statements: 



 If indices are all even or two odd and one even, the 2nd term will give a positive contribution to 

the sum 

 If indices are all odd or two even and one off, the 2nd term will give a negative contribution to 

the sum, likely making |𝑆𝐺|2 (which we measure) smaller. 

Comparing to the powder x-ray diffraction image we can see that the 111 peak is very small compared 

to the nearby 200 and ditto for the 311 vs 222.  In general, we expect peaks to get smaller as we move 

to higher angle because higher-index planes contain fewer atoms, but the analysis we did above allows 

us to gain further insight into why some Bragg peaks are larger than others nearby. 

If we are using x-rays to do our diffraction experiments, the form factor is proportional to Z (the atomic 

number).  This is derived sketchily in your textbook, but we will take it as a given for this lecture.  To be 

more specific, it is electrons which do the scattering so the number of electrons on each species of 

atoms is what matters.  This might not be the same as the atomic number for ionic solids like NaCl, 

where the crystal structure is made up of charged species. 

To summarize: 

𝑍𝑁𝑎 = 11 

𝑍𝐶𝑙 = 17 

Electrons on Na+ = 10 

Electrons on Cl− = 18 

 

 

 

 

  

  

   

  

  

 


