
Lecture 7: Bonding in solids and elastic strain 

 Covalent Crystals (electrons shared between neighboring atoms) 

 Metallic Bonding (delocalized electrons ‘shared’ among all atoms in crystal) 

 Van der Waals crystals (electric dipole-dipole interactions) 

 Introduction to elastic strain 

Review: Ionic solids 

Definition: charged ions held together because coulomb attraction between opposite charges 

overcomes repulsion between like charges 

Examples: NaCl, KCl, many other salts and ceramics 

Key concepts: madelung constant and madelung energy 

Total potential energy of crystal: 𝑈𝑡𝑜𝑡 =
−𝑁𝛼𝑞2

𝑅0
(1 −

𝜌

𝑅0
) 

Madelung energy=prefactor term (term inside parenthesis ~1) 

𝑅0 = equilibrium atomic separation (found by finding minimum of potential energy); N=# of ion 

pairs 

Madelung constant=𝛼=sum of coulomb terms from every other ion; this parameter contains the 

messy arithmetic involved in describing ionic solids, and it is also the configuration-dependent term in 

the expression for the total potential energy 

Covalent bonding 

Most commonly encountered in Column-4 elements (C, Si, Ge…) and nearby columns too (e.g. GaAs).  In 

column-4, atoms are 4 electrons short of a full shell, which they can attain by sharing electrons with 4 

neighbors.   

Most common manifestation in this class—diamond lattice.  Each atom is tetrahedrally bonded to 4 

other atoms.  Technologically, this is one of the most important bonding schemes because it is 

implicated in Si, GaAs, GaN (see HW1) just to name several examples.  Biologically, this is also one of the 

most important bonding schemes, because carbon can make covalent bonds in several different ways. 

Example: graphene—sp2 hybridized carbon forms bonds with 3 other carbons.   

Identify primitive lattice vectors in honecomb lattice (and explain why the obvious suspects are not it) 



 

Metallic bonding 

Metals are characterized by ductility and electrical conductivity, both of which can be understood by 

metallic bonding which features delocalized electrons (one or two from each atom) which are free to 

move around the entire solid. Metals also tend to crystallize in relatively close-packed structures—FCC, 

HCP, and BCC.  If the atoms are imagined as hard spheres, FCC and HCP allow for the highest packing 

fracking possible and BCC is close. 

Q: why is ductility related to metallic bonding 

A: Compare to covalent bonding (which is very directional) or ionic bonding (which requires a specific 

configuration for electrostatic stability), metallic bonding doesn’t prefer one configuration of atoms 

relative to another. 

Example of metallic bonding in action—cold welding.  This is where two metals are joined to each other 

in vacuum without using heat or molten components.  Vacuum is needed to avoid the formation of a 

native oxide on the metal surface (pretty much every metal oxidizes a tiny bit).  When two unoxidized 

pieces of metal are brought into contact in such a way that large surface areas contact each other 

(either because the metal pieces are really flat, or because they are smushed together hard enough, or 

because they are soft enough to easily conform to each other), they will actually fuse.  This is cold 

welding. 

Van der Waals solids 

Van der waals interactions are very important in our everyday life.  For example, the adhesive in sticky 

tape works via van der waals interactions, and vdW interactions also allow geckos to stick to smooth 

surfaces like glass. 

The important things to remember about van der waals interaction are: 

 It is a dipole-dipole interaction (permanent dipole/permanent dipole, permanent dipole/ 

induced dipole, or induced dipole induced dipole) 

 It is a very short-range interaction and is only appreciable if two objects are very close (within 

several atomic radii) to one another 

 When an atomic lattice is held together by van der waals interactions, the resulting potential 

energy landscape that each atom is subjected to is called the ‘lennard jones potential.’ 



The textbook explains VdW interactions using neutral, non-reactive atoms, such as Xenon.   

Consider two atoms a distance r apart 

The average charge distribution is spherically symmetric, but at any instant, there might be more charge 

on one side than on the other, producing an instantaneous dipole. 

Review: derivation of electric field from dipole (this is not derived in class, we just use the result) 

 

The electric potential of this charge distribution in the far-field regime is given by: 

Φ(𝐫) =
𝑞

|𝒓 − 𝒓+|
−

𝑞

|𝒓 − 𝒓−|
 

Where 𝒅 = 𝒓+ − 𝒓− 

Define a position relative to the center of mass of the two charges (assuming they have the same mass): 

𝑹 = 𝒓 −
𝒓+ + 𝒓−

2
, �̂� = 𝑹/𝑅 

Rewrite r in terms of R and plug into equation for electric potential 

Φ(𝑹) =
𝑞

|𝑹 +
𝒓− − 𝒓+

2 |
−

𝑞

|𝑹 +
𝒓+ − 𝒓−

2 |
 

Φ(𝑹) =
𝑞

|𝑹 −
𝒅
2|

−
𝑞

|𝑹 +
𝒅
2|

 

Take out a factor of R from absolute value using definition of unit vector above 

Φ(𝑹) =
𝑞

|𝑅�̂� +
𝑅𝒅
2𝑅|

−
𝑞

|𝑅�̂� +
𝑅𝒅
2𝑅|

 

Φ(𝑹) =
𝑞

𝑅 |1 +
𝒅 ∙ �̂�
2𝑅 |

−
𝑞

𝑅 |1 +
𝒅 ∙ �̂�
2𝑅 |

 

 

Taylor expand each term to first order noticing that 
𝒅∙�̂�

2𝑅
≪ 1 (use: 

1

1−𝑥
= ∑ 𝑥𝑛∞

𝑛=0  



Φ(𝑹) ≈
𝑞

𝑅
[1 + 𝒅 ∙

�̂�

2𝑅
− 1 + 1 + 𝒅 ∙

�̂�

2𝑅
] 

Φ(𝑹) ≈
𝑞�̂�

𝑅
[1 + 𝒅 ∙

�̂�

2𝑅
− 1 + 1 + 𝒅 ∙

�̂�

2𝑅
] 

Φ(𝑹) ≈
𝑞(𝒅 ∙ �̂�)

𝑅2
 

Define a new dipole moment vector, 𝒑 = 𝑞𝒅 

Φ(𝑹) =
𝒑∙�̂�

𝑅2 =
𝑝𝑐𝑜𝑠𝜃

𝑅2  (𝜃 is the angle between dipole vector and observation point) 

The electric field is given as 𝐸(𝑹) = −∇Φ(𝑹) 

𝐸(𝑹) =
2𝑝𝑐𝑜𝑠𝜃

𝑅3
�̂� +

𝑝𝑠𝑖𝑛𝜃

𝑅3
�̂� 

This can be re-expressed in a coordinate free form as: 

𝐸(𝑹) =
3(𝒑 ∙ �̂�)�̂� − 𝒑

𝑅3
 

This is the result we will use: that the electric field from a dipole falls off as 1/𝑟3 

First we will do a sketchy derivation, then we will follow the derivation in the textbook. 

Consider one atom which has a dipole moment 𝒑𝟏 

It will provide an electric field 𝐸1 ∝ 𝑝1/𝑟3 a distance r away 

Another atom will feel this electric field and it will be polarized into an induced dipole.  The dipole 

moment of the induced dipole will be proportional to the electric field via a polarizability constant 𝛼 

which will depend on what type of atom you are considering. 

𝑝2 = 𝛼𝐸~
𝛼𝑝1

𝑟3
 

The energy stored in an electric field is proportional to 𝐸2 so the energy of the dipole-dipole interaction 

is given by multiplying the field originating from each of them: 

𝑈 ∝
𝑝1

𝑟3

𝛼𝑝1

𝑟3
= 𝛼𝑝1

2/𝑟6 

This is an important piece of information to remember: the potential energy from dipole-dipole 

interaction falls off as 1/𝑟6 

 

Now for the full derivation in your textbook: 

Consider two oscillators (springs) with + and – charge on either end; basically, two dipoles whose dipole 

moment oscillates as the spacing between the charges oscillates 



 

The coulomb interaction within this system is: 

𝑈 =
𝑒2

𝑅
+

𝑒2

𝑅 + 𝑥1 − 𝑥2
−

𝑒2

𝑅 + 𝑥1
−

𝑒2

𝑅 − 𝑥2
 

(if the charges in the image above are labeled A, B, C, D from left to right, the terms in the equation 

above from left to right are coulomb interaction between AC, BD, AD, and BC) 

Again, we will use the taylor expansion for 
1

1−𝑥
= ∑ 𝑥𝑛∞

𝑛=0  for |𝑥| < 1 

And we work in the limit where |𝑥1|, |𝑥2| ≪ 𝑅 

Note: we need to expand to second order, because we will get zero otherwise 

𝑈 ≈
𝑒2

𝑅
+

𝑒2

𝑅
[1 +

𝑥2 − 𝑥1

𝑅
+ (

𝑥2 − 𝑥1

𝑅
)

2

− 1 +
𝑥1

𝑅
− (

𝑥1

𝑅
)

2

− 1 −
𝑥2

𝑅
− (

𝑥2

𝑅
)

2

] 

𝑈 ≈
𝑒2

𝑅
[−

2𝑥1𝑥2

𝑅2 ] =
−2𝑒2𝑥1𝑥2

𝑅3
 

Change coordinates (s=symmetric; a=antisymmetric): 

𝑥𝑠 ≡
1

√2
(𝑥1 + 𝑥2) 

𝑥𝑎 ≡
1

√2
(𝑥1 − 𝑥2) 

Write 𝑥1, 𝑥2 in terms of the new coordinates: 

𝑥1 ≡
1

√2
(𝑥𝑠 + 𝑥𝑎) 

𝑥2 ≡
1

√2
(𝑥𝑠 − 𝑥𝑎) 

This gives 𝑈 =
𝑒2(𝑥𝑠

2−𝑥𝑎
2)

𝑅3  

Also, define momenta in terms of symmetric and antisymmetric modes: 

𝑝1 ≡
1

√2
(𝑝𝑠 + 𝑝𝑎) 



𝑝2 ≡
1

√2
(𝑝𝑠 − 𝑝𝑎) 

Total Hamiltonian including kinetic energy terms (function of momentum) and potential energy terms 

(electrostatic and from spring): 

ℋ =
𝑝1

2

2𝑚
+

𝑝2
2

2𝑚
+

1

2
𝐶𝑥1

2 +
1

2
𝐶𝑥2

2 −
𝑒2(𝑥𝑠

2 − 𝑥𝑎
2)

𝑅3
 

(C is a spring constant term; next steps just involve putting everything in terms of position and 

momentum variables that have s and a subscripts) 

=
1

4𝑚
(𝑝𝑠

2 + 2𝑝𝑠𝑝𝑎 + 𝑝𝑎
2 + 𝑝𝑠

2 − 2𝑝𝑠𝑝𝑎 + 𝑝𝑎
2) +

1

4
𝐶(𝑥𝑠

2 + 2𝑥𝑠𝑥𝑎 + 𝑥𝑎
2 + 𝑥𝑠

2 − 2𝑥𝑠𝑥𝑎 + 𝑥𝑎
2)

−
𝑒2

𝑅3
(𝑥𝑠

2 − 𝑥𝑎
2) 

=
1

2𝑚
(𝑝𝑠

2 + 𝑝𝑎
2) + 𝑥𝑠

2 (
1

2
𝐶 −

𝑒2

𝑅3) + 𝑥𝑎
2 (

1

2
𝐶 +

𝑒2

𝑅3) 

= [
1

2𝑚
𝑝𝑠

2 +
1

2
(𝐶 −

2𝑒2

𝑅3 ) 𝑥𝑠
2] + [

1

2𝑚
𝑝𝑎

2 +
1

2
(𝐶 +

2𝑒2

𝑅3 ) 𝑥𝑎
2] 

Thus, the Hamiltonian has reduced to two de-coupled harmonic oscilators with frequency 

𝜔 = [(𝐶 ±
2𝑒2

𝑅3
)/𝑚]

1/2

 

Define a frequency of the harmonic oscillator if the coulomb term were absent, 𝜔0 = √𝐶/𝑚 

Expand the square root to get an approximate expression for 𝜔 in terms of 𝜔0 (use: (1 + 𝑥)1/2 ≈ 1 +
1

2
𝑥 −

1

8
𝑥2 + ⋯) 

𝜔 ≈ 𝜔0 [1 ±
1

2
(

2𝑒2

𝐶𝑅3) −
1

8
(

2𝑒2

𝐶𝑅3)

2

+ ⋯ ] 

The zero point energy of the interacting system is given by 
ℏ𝜔𝑎

2
+

ℏ𝜔𝑠

2
 where the two terms come from 

the fact that the Hamiltonian reduces to two oscillators with two different frequencies.  In the absence 

of the coulomb term in the Hamiltonian, the zero point energy would be given by ℏ𝜔0 (twice the 

ordinary ZPE because there are two harmonic oscillators) 

The difference in potential energy is given by: 

Δ𝑈 = ℏ𝜔0 −
ℏ𝜔0

2
[1 +

1

2
(

2𝑒2

𝐶𝑅3) −
1

8
(

2𝑒2

𝐶𝑅3)

2

+ 1 −
1

2
(

2𝑒2

𝐶𝑅3) −
1

8
(

2𝑒2

𝐶𝑅3)

2

+ ⋯ ] = −
ℏ𝜔0

8
(

2𝑒2

𝐶𝑅3)

2

≡ −
𝐴

𝑅6
 

The key things to note are: 

 Change in zero point energy is negative, indicating that coupling between dipoles saves energy 



 The ~1/𝑅6 dependence is still there 

We have shown how two dipoles attract each other when they are close by, but we need to remember 

that we are dealing with atoms and they cannot get arbitrarily close together—this originates from Pauli 

exclusion.  Just as we did for the potential in an ionic solid, we need to add an empirical term to the 

potential energy to account for this repulsion at small interatomic separations.  It is customary to use 

𝑈𝑟𝑒𝑝𝑢𝑙𝑠𝑒 = 𝐵/𝑅12 

Putting this all together, we get the Lennard-Jones potential: 

𝑈(𝑅) = 4𝜖[(
𝜎

𝑅
)

12

− (
𝜎

𝑅
)

6

] 

We have introduced two new parameters such that 4𝜖𝜎6 = 𝐴, 4𝜖𝜎12 = 𝐵 

In the Lennard-Jones potential, the 2nd term is physically motivated by dipole-dipole attraction, derived 

above.  The first term is just an empirical term to make sure that atoms cannot get too close together 

and that beyond a certain point, it is more difficult to compress the solid than to stretch it apart (at small  

compression or stretching, the force will be identical because the minimum of the potential is quadratic 

to first order) 

 

Using the potential, we can get expressions for the equilibrium lattice constant and the cohesive energy: 

Find total potential energy by adding contribution from all atoms 

𝑈𝑡𝑜𝑡 =
1

2
𝑁(4𝜖)[∑ [(

𝜎

𝑝𝑖𝑗𝑅
)

12

− (
𝜎

𝑝𝑖𝑗𝑅
)

6

]𝑗   

Where 𝑝𝑖𝑗  is the distance, in terms of the nearest neighbor distance R, between the reference atom I 

and every other atom j.  One needs to choose a crystal structure before evaluating these sums, and your 

textbook gives values for the FCC and HCP structures. 

𝑑𝑈𝑡𝑜𝑡

𝑑𝑅
= 0 = −2𝑁𝜖[

(12)(12.13)𝜎12

𝑅13
− (6)(14.45)𝜎6/𝑅7] 

(the first term in the parenthesis comes from the derivate, and the 2nd term comes from the sum over all 

𝑝𝑖𝑗  for a HCP or FCC lattice) 



Solving for R above gives 

𝑅0

𝜎
= 1.09 

The cohesive energy is found by plugging in the value for the equilibrium separation, 𝑅0, into the 

equation for 𝑈𝑡𝑜𝑡 

𝑈𝑡𝑜𝑡 = −2.15 ∗ 4𝑁𝜖 

Quantum mechanical corrections can reduce this cohesive energy. 

In your textbook, vdw solids are discussed in the context of things like solid Xenon.  While this is an 

important textbook example, in recent years, a very important class of materials has come into research 

prominence, known as van der waals solids.  There are materials, such as graphene, which can be 

reduced to a single unit cell thickness using everyday implements like scotch tape.  Then, people can 

bring two different films (e.g. graphene and hexagonal boron nitride) close enough together that they 

will stick and make a new franken-material.   The composite van-der-waals-bound material will often 

have properties that are completely different from its constituents. 

Elastic strains 

For this portion of the course, we will pretend that a material is not made up of discrete atoms and view 

it as a continuous medium.  We will develop a formalism for describing and analyzing elastic strains 

(elastic=like a spring, linear dependence between force and displacement; strain=how much we stretch 

the solid) 

The purpose of this section is two-fold: 

 Describe the aggregate mechanical properties of materials 

 Build a formalism needed to describe the transmission of elastic waves in solids (e.g. when we 

say ‘the speed of sound in diamond is 12,000 m/s, what does this actually mean?) 

Stress: force applied to a unit area 

Strain: deformation resulting from stress 



 

We imagine 3 orthogonal vectors �̂�, �̂�, �̂�  embedded in a solid before we have deformed it.  After we 

have deformed the solid, these vectors might be of different length and they might be pointing in 

different directions.  We describe these deformed vectors 𝒙′, 𝒚′, 𝒛′ in the following way: 

𝒙′ = (1 + 𝜖𝑥𝑥)�̂� + 𝜖𝑥𝑦�̂� + 𝜖𝑥𝑧�̂� 

𝒚′ = 𝜖𝑦𝑥�̂� + (1 + 𝜖𝑦𝑦)�̂� + 𝜖𝑦𝑧�̂� 

𝒛′ = 𝜖𝑧𝑥�̂� + 𝜖𝑧𝑦�̂� + (1 + 𝜖𝑧𝑧)�̂� 

The components 𝜖𝛼𝛽 define the deformation.  They are dimensionless and have values much smaller 

than 1 in most instances in solid state physics.  How one ‘reads’ these vectors is (for example) 

𝜖𝑥𝑥force along x, deformation along x; 𝜖𝑥𝑦shear xy-plane along x or y direction (depending which 

unit vector it is next to) 

(pretend the sigma’s in the image above are 

epsilons…) 



The new axes have new lengths given by (for example): 

𝒙′ ∙ 𝒙′ = 1 + 2𝜖𝑥𝑥 + 𝜖𝑥𝑥
2 + 𝜖𝑥𝑦

2 + 𝜖𝑥𝑧
2  

Usually we are dealing with tiny deformations so 2nd order terms are often dropped. 


