
Lecture 10:  

 Review: waves in cubic crystals from top-down approach 

 Lecture: Atomic vibrations in crystals 

Review 

Consider inhomogenously stressed cube and collect all of the stresses in the x-direction.  A uniform 

(homogenous) stress will not produce a propagating wave. 

We express forces in terms of elements of the elastic stiffness matrix (C) multiplied by strains (e). 

Then, we use earlier expressions for the strains in terms of derivatives of displacement variables in the x, 

y, and z direction which are call u, v, and w 
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This equation has all the trappings of the PDE for a wave (2nd time derivative on one side, 2nd spatial 

derivative on the other side).  To solve this problem we consider special cases of the propagation 

direction (which determines the factors in the exponent) and the direction of particle motion (which 

determines if we drop u, v, w or none of these).   Then we solve for 𝜔 as a function of k. For example, for 

a wave propagating in the [100] direction in a crystal and particle motion also in the [100] direction 

(longitudinal wave) we use a ‘guessed’ solution of the form: 

𝑢 = 𝑢0𝑒𝑖(𝐾𝑥−𝜔𝑡) 

Which yields a solution  

𝜔2𝜌 = 𝐶11𝐾2 

And a propagation velocity 

𝑣𝑠 = √
𝐶11

𝜌
 

Note that the velocity is the same for all k. 

We can also get a transverse wave (particle motion orthogonal to propagation direction) by ‘guessing’ 

the solution: 

𝑣 = 𝑣0𝑒𝑖(𝐾𝑥−𝜔𝑡) 

When we substitute this into the wave equation we get: 

𝜔2𝜌 = 𝐶44𝐾2 

𝑣𝑠 = √
𝐶44

𝜌
 

Again, propagation velocity is independent of k. 



 

Atomic potentials 

In the previous chapter we derived expressions for the atomic potentials due to van der waals bonding 

and ionic bonding. 

Van der waals (Lennard Jones potential):  

𝑈(𝑅) = 4𝜖[(
𝜎

𝑅
)
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− (
𝜎

𝑅
)
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] 

(each atom feels this potential energy as a function of distance from its neighbor) 

 

Ionic solid atomic potential:  

𝑈𝑡𝑜𝑡 = 𝑁(𝑧𝜆𝑒
−

𝑅

𝜌 −
𝛼𝑞2

𝑅
)  

Where z is the number of nearest neighbors an ion in the crystal has, N is the number of total ion pairs, 

and 𝛼 is the madelung constant. 

𝛼 ≡ ∑
(±)

𝑝𝑖𝑗
𝑗  (sum includes nearest neighbors) 

 

What both of these potentials (and any other one with a local minimum) have in common is that close 

to the equilibrium atomic spacing (𝑅0), 𝑈~𝑘(𝑟 − 𝑅0)2.  That is to say, for small amounts of atomic 



motion, the potential looks like that of a harmonic oscillator.  Thus, when we model the atoms of a solid 

as masses on springs, there is some physical motivation for that model. 

Model: infinite one dimensional line of masses connected by springs  

Consider a line of identical masses, m, a distance a apart connected by springs.

  

The position of each mass is labeled as in the image below, with some central mass chosen to have the 

position label na (n is an integer). 

When a mass is displaced from its equilibrium position, we call this displacement 𝑢(𝜈𝑎), where 𝜈 is an 

integer.  For the n-th atom, this  small but arbitrary displacement has the label  u(na) 

When all of the atoms are subjected to small but arbitrary dispacements, the total potential energy is 

given by: 

𝑈𝑡𝑜𝑡 =
1

2
𝐶 ∑[𝑢(𝑛𝑎) − 𝑢([𝑛 + 1]𝑎)

𝑛

]2 

Here, the term in parenthesis after the sum measures how far a given spring has been stretch and 

compressed.  It is for this reason that we only count the neighbor to the right of each atom.  Now, write 

equation of motion for atom located at position na 

𝑚𝑎 = 𝐹 

𝑚
𝜕2𝑢(𝑛𝑎)

𝜕𝑡2
= −

𝜕𝑈𝑡𝑜𝑡

𝜕𝑢(𝑛𝑎)
 

For the expression on the right side of the equation, we only consider u(na) terms in 𝑈𝑡𝑜𝑡: 

𝑈𝑡𝑜𝑡,𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑢(𝑛𝑎) =
1

2
𝐶[𝑢(𝑛𝑎) − 𝑢([𝑛 + 1]𝑎)]2 +

1

2
𝐶[𝑢([𝑛 − 1]𝑎) − 𝑢(𝑛𝑎)]2 

=
1

2
𝐶[2𝑢(𝑛𝑎)2 − 2𝑢(𝑛𝑎)𝑢([𝑛 + 1]𝑎) − 2𝑢(𝑛𝑎)𝑢([𝑛 − 1]𝑎) + 𝑢([𝑛 + 1]𝑎)2 + 𝑢([𝑛 − 1]𝑎)2 

Plugging this into the equation of motion above: 

𝑚
𝜕2𝑢(𝑛𝑎)

𝜕𝑡2
= −𝐶[2𝑢(𝑛𝑎) − 𝑢([𝑛 − 1]𝑎) − 𝑢([𝑛 + 1]𝑎)] 

We are seeking wave-like solutions, which have the form: 

𝑢(𝑛𝑎, 𝑡) ∝ 𝑒𝑖(𝑘𝑛𝑎−𝜔𝑡) 

As in the previous lecture, 𝜔 is the angular frequency of the wave, and k is the wavevector (which 

encodes information about wavelength and propagation direction).  Since we are considering a 100% 1-



dimensonal system at this point, so direction is not explicitly included, but we plug in x=na for that 

variable. 

Substitute the solution 𝑢(𝑛𝑎, 𝑡) ∝ 𝑒𝑖(𝑘𝑛𝑎−𝜔𝑡) into the equation of motion: 

−𝑚𝜔2𝑒𝑖(𝑘𝑛𝑎−𝜔𝑡) = −𝐶[2𝑒𝑖(𝑘𝑛𝑎−𝜔𝑡) − 𝑒𝑖[𝑘(𝑛−1)𝑎−𝜔𝑡)] − 𝑒𝑖[𝑘(𝑛+1)𝑎−𝜔𝑡)]] 

−𝑚𝜔2𝑒𝑖(𝑘𝑛𝑎−𝜔𝑡) = −𝐶[2 − 𝑒−𝑖𝑘𝑎 − 𝑒𝑖𝑘𝑎]𝑒𝑖(𝑘𝑛𝑎−𝜔𝑡) 

𝑚𝜔2 = 𝐶[2 − 2𝑐𝑜𝑠𝑘𝑎] 

Solve for dispersion relation (𝜔 𝑣𝑠 𝑘 

𝜔 = √
2𝐶(1 − 𝑐𝑜𝑠𝑘𝑎)

𝑚
 

Use the trig identity sin2 𝜃

2
=

1−𝑐𝑜𝑠𝜃

2
 

𝜔 = 2√
𝐶

𝑚
|𝑠𝑖𝑛

𝑘𝑎

2
| 

The absolute value appears around the sine to ensure that 𝜔 is positive 

This solution describe a propagating wave with 

Phase velocity: 𝑣𝑝 = 𝜔/𝑘 

Group velocity: 𝑣𝑔 =
𝜕𝜔

𝜕𝑘
 

For the dispersion relation for this propagating wave, we consider small k where 𝑠𝑖𝑛𝜃~𝜃 

𝜔 ≈ 2√
𝐶

𝑚
|
𝑘𝑎

2
| 

 

𝜕𝜔

𝜕𝑘
= 𝑣𝑔,𝑠𝑚𝑎𝑙𝑙 𝑘 = 𝑎√

𝐶

𝑚
 

A plot of the dispersion relation is shown below: 

Question: what is the velocity at 𝒌 = 𝝅/𝒂? 



 

Since the frequency goes as the absolute value of the sine of momentum (k), the dispersion relation is a 

function which repeats infinitely.  However, beyond the first brillouin zone, the information is 

redundant. 

As a reminder, the first brillouin zone is defined as: 

 Minimum volume containing all wavevectors, k, that can be bragg reflected by the crystal 

 The wigner-seitz cell  (see Ch1 of textbook) in reciprocal space (see Ch2), defined by drawing 

lines between a central reciprocal lattice point and each of its neighbors, drawing planes (lines 

in 2D or 1D) that are perpendicular bisectors of these lines, and taking the smallest volume 

enclosed by these planes 

For a 1D lattice with unit cell dimension a, the reciprocal lattice is given by vectors 𝒃𝟏 =
2𝜋

𝑎
�̂� and every 

reciprocal lattice point can be reached with an integer multiple of b1. 

Setting one reciprocal lattice point at the origin, the bisectors between the origin and the closest two 

lattice points are located at = ±
𝜋

𝑎
 .  This sets the boundary of the brillouin zone in 1 dimension.  Any k’ 

outside these limits is equivalent to 𝑘′ −
2𝜋𝑛

𝑎
 which translates that point back into the first brillouin zone 

(n is an integer).   

One dimensional lattice with a basis 

Now we consider a 1 dimensional system with two (identical) atoms in the basis.  Equilibrium positions 

of the atoms are given by na and na+d, where 𝑑 ≤
𝑎

2
.  The lattice spacing is still given by a.  There are 

two spring constants: 𝐶1 for short bond and 𝐶2 for longer bond.

 



𝑈𝑡𝑜𝑡 =
𝐶1

2
∑[𝑢(𝑛𝑎) − 𝑣(𝑛𝑎)]2

𝑛

+
𝐶2

2
∑[𝑣(𝑛𝑎) − 𝑢([𝑛 + 1]𝑎)]2

𝑛

 

(the position index na refers to both atoms in a given unit cell; u is the displacement of the atoms to the 

left of spring C1 (colored in above) and v is the displacement of the atoms to the left of spring C2 (open 

circles above)) 

𝑚
𝜕2𝑢(𝑛𝑎)

𝜕𝑡2
= −

𝜕𝑈𝑡𝑜𝑡

𝜕𝑢(𝑛𝑎)
 

𝑚
𝜕2𝑢(𝑛𝑎)

𝜕𝑡2
= −

𝐶1

2
[2𝑢(𝑛𝑎) − 2𝑣(𝑛𝑎)] −

𝐶2

2
[2𝑢(𝑛𝑎) − 2𝑣([𝑛 − 1]𝑎)] 

𝑚
𝜕2𝑣(𝑛𝑎)

𝜕𝑡2
= −

𝜕𝑈𝑡𝑜𝑡

𝜕𝑣(𝑛𝑎)
 

𝑚
𝜕2𝑣(𝑛𝑎)

𝜕𝑡2
= −

𝐶1

2
[2𝑣(𝑛𝑎) − 2𝑢(𝑛𝑎)] −

𝐶2

2
[2𝑣(𝑛𝑎) − 2𝑢([𝑛 + 1]𝑎)] 

Again, let’s guess wavelike solutions of the form: 

𝑢(𝑛𝑎) = 𝜖1𝑒𝑖(𝑘𝑛𝑎−𝜔𝑡) 

𝑣(𝑛𝑎) = 𝜖2𝑒𝑖(𝑘𝑛𝑎−𝜔𝑡) 

Where 𝜖1 and 𝜖2 are constants to be determined latter. 

Plug our solutions into the equations of motion above and cancel out common factors of 𝑒𝑖(𝑘𝑛𝑎−𝜔𝑡) 

Equation for u: −𝑚𝜔2𝜖1 = −𝐶1[𝜖1 − 𝜖2] − 𝐶2[𝜖1 − 𝜖2𝑒−𝑖𝑘𝑎] 

Equation for v: −𝑚𝜔2𝜖2 = −𝐶1[𝜖2 − 𝜖1] − 𝐶2[𝜖2 − 𝜖1𝑒𝑖𝑘𝑎] 

Rewrite equations grouping 𝜖1’s and 𝜖2′𝑠 together: 

0 = 𝜖1[−𝐶1 − 𝐶2 + 𝑚𝜔2] + 𝜖2[𝐶1 + 𝐶2𝑒−𝑖𝑘𝑎] 

0 = 𝜖1[𝐶1 + 𝐶2𝑒𝑖𝑘𝑎] + 𝜖2[−𝐶1 − 𝐶2 + 𝑚𝜔2] 

This system of equations can be rewritten in matrix form 

0 = (
−𝐶1 − 𝐶2 + 𝑚𝜔2 𝐶1 + 𝐶2𝑒−𝑖𝑘𝑎

𝐶1 + 𝐶2𝑒𝑖𝑘𝑎 −𝐶1 − 𝐶2 + 𝑚𝜔2) (
𝜖1

𝜖2
) 

The nontrivial solution is achieved if the determinant of the matrix is equal to zero.   

(𝑚𝜔2 − (𝐶1 + 𝐶2))2 − (𝐶1
2 + 𝐶1𝐶2𝑒−𝑖𝑘𝑎 + 𝐶1𝐶2𝑒𝑖𝑘𝑎 + 𝐶2

2) = 0 

(𝑚𝜔2 − (𝐶1 + 𝐶2))2 = 𝐶1
2 + 2𝐶1𝐶2𝑐𝑜𝑠𝑘𝑎 + 𝐶2

2 

𝑚𝜔2 − (𝐶1 + 𝐶2) = ±√𝐶1
2 + 2𝐶1𝐶2𝑐𝑜𝑠𝑘𝑎 + 𝐶2

2 

𝜔2 =
(𝐶1 + 𝐶2)

𝑚
±

1

𝑚
√𝐶1

2 + 2𝐶1𝐶2𝑐𝑜𝑠𝑘𝑎 + 𝐶2
2 



When we plug this expression for 𝜔2 back into one of the equations (use the 2nd one) we used to derive 

it, we can get a ratio for 
𝜖2

𝜖1
.  This is useful for quantifying the amplitudes of the two wave solutions we 

have. 

𝜖2

𝜖1
=

𝐶1 + 𝐶2𝑒𝑖𝑘𝑎

∓√𝐶1
2 + 2𝐶1𝐶2𝑐𝑜𝑠𝑘𝑎 + 𝐶2

2
 

 

𝜖2

𝜖1
=

𝐶1 + 𝐶2𝑒𝑖𝑘𝑎

∓|𝐶1 + 𝐶2𝑒𝑖𝑘𝑎|
 

We plot dispersion relations (first brillouin zone only) for the 2 roots of 𝜔(𝑘), and then we write simpler 

expressions for the roots in certain limits.  Note that the book that the figure was taken from uses 

different notation, so substitute 𝐾 → 𝐶1, 𝐺 → 𝐶2.  Note that there are now two dispersions, one like we 

had before, and a new one which has finite energy at k=0.  The former is called an acoustic dispersion 

(A) and the latter is called an optical dispersion (O).  The physical origin of this language is that the 

acoustic branch is a traveling wave, like sound, and the optical branch can couple to light because light 

which has energy comparable to these waves in solids also has really small momentum 𝑘 =
𝜈

𝑐
 

 

Limit 1: 𝑘~0  

In the limit of small k, 𝑐𝑜𝑠𝑘𝑎 ≈ 1 −
1

2
(𝑘𝑎)2 

And  

𝜔2 ≈
(𝐶1 + 𝐶2)

𝑚
±

1

𝑚
√𝐶1

2 + 2𝐶1𝐶2 − 𝐶1𝐶2(𝑘𝑎)2 + 𝐶2
2 ≈

(𝐶1 + 𝐶2)

𝑚
±

(𝐶1 + 𝐶2)

𝑚
√1 −

𝐶1𝐶2(𝑘𝑎)2

(𝐶1 + 𝐶2)2
 



Also, remember that the expansion of √1 + 𝑥 about x=0 ≈ 1 +
1

2
𝑥 

 

And the roots of 𝜔 are: 

 (positive root) 𝜔 = √
(𝐶1+𝐶2)

𝑚
−

𝐶1𝐶2(𝑘𝑎)2

2𝑚(𝐶1+𝐶2)
 

 (negative root) 𝜔 = 𝑘𝑎√
𝐶1𝐶2

2𝑚(𝐶1+𝐶2)
 

The negative root belongs to the acoustic branch and the positive root belongs to the optical branch.  

Physically, the acoustic mode at k~0 corresponds to a longitudinal wave traveling across the spring chain 

at velocity 
𝜕𝜔

𝜕𝑘
~𝑎√

𝐶1𝐶2

2𝑚(𝐶1+𝐶2)
 

The positive root belongs to the optical branch, and physically what this looks like (at k~0) is adjacent 

pairs of atoms oscillating out of phase with the next pair.  The physical picture is found by considering 

the relative values of 𝜖1, 𝜖2 in each regime. 

 

Limit 2: 𝑘~𝜋/𝑎 

Here, 𝑐𝑜𝑠𝑘𝑎~ − 1 

The two roots are:  

 (positive root) 𝜔 = √
2𝐶1

𝑚
 

 (negative root) 𝜔 = √
2𝐶2

𝑚
 

One thing to notice is that neither of these roots have a factor of k in them, so the derivative of 𝜔 with 

respect to k gives zero.  Thus, these are not traveling waves. 

Another thing to notice is that each root only involves one spring constant.  Thus, these solutions 

correspond to situations where only one of the springs is stretched at a time. 



 

In this derivation, I showed how to get optical and acoustic waves in a line of masses on springs where 

the 2 masses in the basis are the same but the spring constant are different.  Kittel derives the same 

qualitative result using a line of masses on springs where the 2 masses in the basis are different but the 

spring constants are the same.  You can derive the most general result, which has the same qualitative 

information of two types of waves, using a toy problem where the masses and the spring constants are 

both different. 

Next lecture: 

 How to get transverse waves 

 Quantization of elastic waves 

 

 

 

 

 

 

 


