
Lecture 14: Thermal conductivity 

Review: phonons as particles 

In chapter 5, we have been considering quantized waves in solids to be particles and this becomes very 

important when we discuss thermal conductivity.  In discussing thermal conductivity, we often think of a 

‘gas’ of phonons, and the table below makes this more concrete via a comparison to a classical gas. 

 Classical gas (molecules) Phonon gas 

Number fixed Population depends on 
frequency of mode and 
temperature: 

〈𝑛〉 =
1

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1 
 

(What are the limits of this 
expression for very small T and 
for very large T)? 

Small T: 𝑒ℏ𝜔/𝑘𝐵𝑇 ≫ 1 →
〈𝑛〉~𝑒−ℏ𝜔/𝑘𝐵𝑇 

Large T: 𝑒
ℏ𝜔

𝑘𝐵𝑇~1 +
ℏ𝜔

𝑘𝐵𝑇
 

〈𝑛〉~𝑘𝐵𝑇/ℏ𝜔 
Relationship between energy 
and momentum 

𝐾𝐸 = 𝑝2/2𝑚 
For each particle 

Depends on which branch you 
are considering (see chapter 4), 
but for acoustic phonons near 
k=0, 𝜔~𝑣𝑠𝑘 where k is crystal 
momentum and 𝑣𝑠 is speed of 
sound 

Relationship between 
temperature and total internal 
energy 

For an N-particle gas 
𝑈 = 3𝑁𝑘𝐵𝑇 

𝑈 = ∑ ∑ < 𝑛𝐾,𝑝 > ℏ𝜔𝐾,𝑝𝑝𝐾 = 

= ∑ ∑
ℏ𝜔𝐾,𝑝

𝑒ℏ𝜔𝐾,𝑝/𝑘𝐵𝑇 − 1
𝑝𝐾

 

Collisions Molecules collide with each 
other and with walls of vessel 

Phonons collide with each 
other, with surface of crystal, 
and with impurities 

Energy conserved in collisions? Yes Yes 

Momentum conserved in 
collisions? 

Yes, except for at walls Yes, modulo a reciprocal lattice 
vector G 

Number of particles conserved 
in collision? 

Yes No 

 

Thermal conductivity 

Thermal conductivity is defined as heat flow in response to a temperature gradient 

𝑗𝑈 = −𝐾
𝑑𝑇

𝑑𝑥
 



𝑗𝑈  is the energy transmitted across a unit area per unit time and K is the thermal conductivity 

coefficient.  The negative sign reflects the intuitive fact that ‘heat’ flows from hot regions into cold 

regions. 

We encounter thermal conductivity in many ways in the real world 

 When we heat up a large pan on a tiny electric burner and we have to wait for the edges to 

reach the same temperature as the center 

 When we touch two different materials in thermal equilibrium with the same room, such as 

wood and marble, and the latter feels cooler to the touch (the higher thermal conductivity of 

marble draws heat away from your fingers to the ‘cooler’ side which you are not touching) 

 A challenge in modern electronics is to draw heat away from the processor, and appropriate 

materials with high thermal conductivity can serve this purpose 

Temperature is an incoherent phenomenon—changes in temperature of a system are associated with 

changes in entropy.  Thus, heat flow is not a ballistic process, but rather, involves a lot of collisions.  As a 

starting point, we continue with a particle-like treatment of phonons.  As shown earlier, at higher 

temperature, there is higher occupation or population of phonons modes with energy less than or 

comparable to the temperature.  As these phonons diffuse to the cooler side of a solid, they will scatter 

many times and the value of the thermal conductivity coefficient will depend on how often they scatter. 

𝐾 =
1

3
𝐶𝑣ℓ 

C is the heat capacity (at constant volume, per unit volume), v is the average particle velocity, and ℓ is 

the mean free path between collisions.  The factors of v and ℓ are fairly intuitive (why?), but C needs 

some explaining. 

When a particle moves from a region with temperature 𝑇 + Δ𝑇 to a region with temperature T¸it will 

give up 𝑐Δ𝑇 of energy. 

If this particle moves a distance of one mean free path in this process, 

Δ𝑇 =
𝑑𝑇

𝑑𝑥
ℓ𝑥 =

𝑑𝑇

𝑑𝑥
𝑣𝑥𝜏 

Where 𝜏 is the average time between collisions.  The subscript x has been added because the 

temperature gradient is only in the x-direction for now 

The net flux of energy is: 

𝑗𝑢 = 𝑛𝑐 < 𝑣𝑥
2 > 𝜏

𝑑𝑇

𝑑𝑥
=

1

3
𝑛𝑐〈𝑣2〉𝜏

𝑑𝑇

𝑑𝑥
 

There is a factor of 𝑣𝑥
2 because the first factor of 𝑣𝑥  comes from the amount of energy the particle gives 

up and the second factor comes from the rate of flow of these particles.  The number of particles is 

denoted by n and nc=C is the heat capacity per unit volume (n is particle density, number/volume). 

Thus, 𝑗𝑈 = −
1

3
𝐶𝑣ℓ

𝑑𝑇

𝑑𝑥
 and the previous ‘assertion’ for the expression for K is confirmed 

Causes of thermal resistivity 



Phonons are not conducted ballistically from one end of the sample to another (if this were the case, 

thermal conductivity would solely be determined by sound velocity).  Instead, a number of scattering 

processes introduce a ‘thermal resistivity’ (resistivity is inverse of conductivity).  These include: 

 Imperfections in the crystal such as impurities, inhmogeneities, and crystal grain boundaries 

 The edge or surface of the crystal 

 Scattering off another phonon (this requires an anharmonic potential, which typically holds for 

real materials because the atomic potential is not perfectly quadratic) 

We begin by considering the latter: 

Imagine a process where two phonons of momentum 𝑲𝟏 and 𝑲𝟐 collide and produce a third phonon 

with momentum 𝑲𝟑.  Another way to say this is that two phonons annihilate and produce a new one 

with momentum 𝑲𝟑 = 𝑲𝟐 + 𝑲𝟏. 

 

Following this process, the occupation numbers of these three modes is as follows: 

𝑛𝑲𝟏
→ 𝑛𝑲𝟏

− 1 = 𝑛𝑲𝟏
′ 

𝑛𝑲𝟐
→ 𝑛𝑲𝟐

− 1 = 𝑛𝑲𝟐
′ 

𝑛𝑲𝟑
→ 𝑛𝑲𝟑

+ 1 = 𝑛𝑲𝟑
′ 

Energy conservation requires that: 

𝑛𝑲𝟏
ℏ𝜔(𝑲𝟏) + 𝑛𝑲𝟐

ℏ𝜔(𝑲𝟐) + 𝑛𝑲𝟑
ℏ𝜔(𝑲𝟑) = 𝑛𝑲𝟏

′ℏ𝜔(𝑲𝟏) + 𝑛𝑲𝟐
′ℏ𝜔(𝑲𝟐) + 𝑛𝑲𝟑

′ℏ𝜔(𝑲𝟑) 

= 𝑛𝑲𝟏
ℏ𝜔(𝑲𝟏) − ℏ𝜔(𝑲𝟏) + 𝑛𝑲𝟐

ℏ𝜔(𝑲𝟐) − ℏ𝜔(𝑲𝟐) + 𝑛𝑲𝟑
ℏ𝜔(𝑲𝟑) + ℏ𝜔(𝑲𝟑) 

0 = −ℏ𝜔(𝑲𝟏) − ℏ𝜔(𝑲𝟐) + ℏ𝜔(𝑲𝟑) 

Momentum conservation requires that: 

𝑲𝟏 + 𝑲𝟐 = 𝑲𝟑 + 𝑮 

Where G is a reciprocal lattice vector.   

To make both of these expressions completely generic, we can write: 

 Energy conservation:∑ ℏ𝜔𝑝(𝑲)𝑛𝑲,𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − ∑ ℏ𝜔𝑝𝑛𝑲,𝑝,𝑓𝑖𝑛𝑎𝑙 = 0𝑝𝑝  

 Momentum conservation: ∑ 𝑲𝑛𝑲,𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =𝑝 ∑ 𝑲𝑛𝑲,𝑝,𝑓𝑖𝑛𝑎𝑙 + 𝑮𝑝  

Where the sum over p denotes a sum over all phonon branches (“polarization branches”). 



The factor of G is needed because phonon momentum is only defined modulo a reciprocal lattice vector, 

so if the sum of two phonon momenta is located outside the first Brillouin zone, it is mapped onto an 

equivalent momentum in the first Brillouin zone by translating by a reciprocal lattice vector.  If 𝑮 ≠ 0 is 

needed to make the equality above hold, the scattering is called an Umklapp process.  If G=0, it is called 

a normal scattering process.  It should be noted that only Umklapp processes contribute to a material’s 

thermal resistivity. 

 

Comparison of normal (left) and umklapp(right) processes.  The grey square marks the first Brillouin zone 

in two dimensions, and for a square lattice, the intersection points between the first Brillouin zone and 

the 𝐾𝑥 , 𝐾𝑦 axes are at ±
𝜋

𝑎
 

To show that only umklapp processes contribute to thermal resistivity, we consider the sum over all 

phonon scattering processes 

𝑲𝑡𝑜𝑡 = ∑ ∑ 𝑲𝑛𝑠(𝑲)

𝐾∈1𝑠𝑡 𝐵𝑟𝑖𝑙𝑙𝑜𝑢𝑖𝑛 𝑧𝑜𝑛𝑒𝑝

 

The outer sum sums over all phonon branches (e.g. all acoustic and optical dispersions) and the inner 

sum counts all momenta in the first Brillouin zone.  The terms being added together include the 

momentum (vector) of each phonon mode being considered (K) multiplied by how many of them there 

are (𝑛𝑝(𝑲)). 

If only normal scattering processes are included 𝑲𝑡𝑜𝑡 = 0 because for every K, there is a –K in the first 

Brillouin zone and 𝑛𝑝(𝑲) = 𝑛𝑠(−𝑲) =
1

𝑒ℏ𝜔𝑝/𝑘𝐵𝑇−1
 

In the context of thermal conductivity, what this means is that if you heat up one side of a rod, you will 

change the occupation numbers of phonon modes, but if these phonons can only scatter via normal 

processes, they will propagate down the length of the rod with no thermal resistance. 

Now consider a situation where Umklapp processes are allowed. 

𝑲𝑡𝑜𝑡 = 𝑲𝒊𝒏𝒊𝒕𝒊𝒂𝒍 − 𝑲𝒇𝒊𝒏𝒂𝒍 = ∑ 𝑲𝑛𝑲,𝑝,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − (

𝑝

∑ 𝑲𝑛𝑲,𝑝,𝑓𝑖𝑛𝑎𝑙 + 𝑮

𝑝

) 

𝑮 = 𝜈1𝒃𝟏 + 𝜈2𝒃𝟐 + 𝜈3𝒃𝟑 is any reciprocal lattice vector, so when we have many terms contributing to 

G, we accommodate this by making the integers 𝜈1 , 𝜈2, 𝜈3 as large as needed 



When we consider Umklapp processes, we do not have the same cancellation as we did without and 

𝑲𝒕𝒐𝒕 = 𝑮. 

Even if we fold this back into the first Brillouin zone, we are still left with a non-zero net momentum (𝑲′) 

which contributes a net drift velocity between collisions which is not zero. 

Consider two temperature regimes: 

1) Temperature much larger than the Debye temperature (𝑻 ≫ 𝜽) :  

at high temperature 𝑛𝑝(𝑲) =
1

𝑒ℏ𝜔/𝑘𝐵𝑇−1
≈

𝑘𝐵𝑇

ℏ𝜔𝑝(𝑲)
 (from taylor expanding exponent to first 

order) 

Using 𝐾 =
1

3
𝐶𝑣ℓ = 〈𝑣2〉𝜏, C is independent of temperature in this high temperature regime, but 

𝜏 is not. 

The collision frequency (
1

𝜏
) should be proportional to the number of phonons that a given 

phonon can collide with and thus 𝐾 ∝ 𝜏 ∝
1

𝑛
∝

1

𝑇
  .  In reality, 𝐾 ∝ 1/𝑇𝑥  where x is between 1 

and 2. 

High temperature not only ensures that C is constant as a function of temperature, but it also 

ensures that Umklapp processes have a reasonable probability of happening because it allows 

for sufficient thermal population of higher momentum (which are also higher frequency) 

acoustic phonons. 

2) 𝑻 ≪ 𝜽 

At low temperature, only low energy (and low momentum) acoustic modes will have substantial 

thermal population, so Umklapp processes will be unlikely and phonon-phonon scattering will 

not contribute to thermal resistivity 

Imperfections 

Geometric effects can decrease the thermal conductivity if they increase a length scale shorter than ℓ. 

For instance, if the material is in a reduced geometry (e.g. a thin film or a nanowire) with minimum 

dimension length D 

𝐾 ≈ 𝐶𝑣𝐷 

This also holds if the material consists of small crystallites of dimension D—phonons can scatter at the 

boundary between crystallites of different orientations and reduce the thermal conductivity 

Example: 

Thermal conductivity of insulating solids at room temperature (insulating so we don’t have to deal with 

electrons’ contribution to thermal conductivity) 

Material K (W/m K) v (m/s) Debye T 

Diamond 2200 12,000  1320K 

Silicon 130  5000  645K 

KCl 6.5 2273 240K 

SiO2 130 3962 470K 



 This table illustrates the general scaling between thermal conductivity, sound velocity, and 

Debye temperature, which makes sense since both K and 𝜃 depend on v 

 Diamond is characterized by a high thermal conductivity, and this is how one tests to see if a 

material is a diamond.  Physically, the large sound velocity, which produces high thermal 

conductivity and Debye temperature, originates from very light atoms (carbon) connected by 

very stiff covalent bonds 

Overview of Chapter 5 

It is common knowledge that atoms “vibrate more” at higher temperature, and in this chapter we 

quantified this aphorism using the quantum nature of atomic lattice vibrations. 

A key step in doing this is recognizing/believing/decreeing that phonons are bosons, and thus any 

number of particles can occupy a given ‘state’ which is defined by a momentum, frequency, and 

‘polarization’ (a polarization is a distinct dispersion branch). 

For a state with a given frequency, its expected occupation number is given by the Planck distribution 

〈𝑛〉 =
1

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1
 

This occupation number allows us to derive heat capacity, thermal expansion (if we were to do a more 

rigorous derivation than the textbook), and thermal conductivity. 

A state with a given frequency also has an associated crystal momentum because elastic waves in 

crystalline solids have specific relationships between frequency and momentum called dispersion 

relations. 

Using boundary conditions, we can show that crystal momentum is quantized, with permissible 

momenta (in 1 dimension) given by: 0, ±
2𝜋

𝐿
, ±

4𝜋

𝐿
, … ±

𝑁𝜋

𝐿
 where N is the number of atoms in the chain, 

and L is the length of the chain. 

Because any given K only allows specific frequencies to satisfy the equations of motion (this is what we 

solved for in Ch. 4), the statement above also means that only certain specific 𝜔 are allowed for each K.  

The number of permissible 𝜔 for each K is determined by how many phonon branches exist in the 

material.  For a D dimensional solid with p atoms in the basis, there are D acoustic branches and D(p-1) 

optical branches.  Each unique combination of 𝜔, 𝐾, and 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 defines a ‘normal mode’ or a 

‘state’ that can be occupied by n phonons.  Although K and polarization (again, polarization is a term the 

book uses, and it is not exactly the same as light polarization…it is just an index to count all the phonon 

branches you have) help define the state you are considering, only the frequency, 𝜔, relative to the 

temperature will determine the occupation of each state. 



 

The density of states, 𝐷(𝜔) is a concept that we use to convert 𝜔(𝐾) dispersion relations into 

information we can use to determine occupation numbers.  The density of states, as the name implies, is 

the number of states available between frequency 𝜔 and frequency 𝜔 + 𝑑𝜔.  Density of states depends 

on the details of the dispersion relation and the dimensionality, but it does not depend on temperature 

(unless temperature changed the dispersion relations).  Occupation number is a separate issue from the 

density of states. 

In three dimensions, a generic expression for the density of states is: 𝐷(𝜔) =
𝐾2𝑉

2𝜋2

𝑑𝐾

𝑑𝜔
 

If we had an analytic or computational expression for 𝜔(𝐾) we could invert it to get 𝐾(𝜔) and 

take a derivative to get 𝑑𝐾/𝑑𝜔 and the density of states.  But sometimes it is equally useful to 

make a physically motivated approximation, and the Debye model is such an approximation 

which works well for predicting behavior of real materials.  The Debye model only considers 

acoustic phonons and approximates all acoustic branches as having the same group velocity v.  

There is also a cutoff frequency, 𝜔𝐷 , which defines the highest frequency phonon which is 

allowed in the debye model.  This frequency also defines a momentum 𝑘𝐷 = 𝜔𝐷/𝑣 and a 

Debye temperature 𝜃 = ℏ𝜔𝐷/𝑘𝐵.  The Debye temperature is physically significant because it 

represents roughly the temperature at which a ‘phonon gas’ starts acting like a classical gas. 

The Debye model gives a closed-form approximation for heat capacity in the limit of low 

temperature and high temperature (low and high relative to 𝜃). 

Low T:  𝐶𝑉 ≈
12𝜋4

5
𝑁𝑘𝐵 (

𝑇

𝜃
)

3

  (This is consistent with experiments) 

High T: 𝐶𝑉 ≈ 3𝑁𝑘𝐵 (This is also consistent with experiments and with a classical gas) 

In almost every concept we have discussed in this chapter, a particle ‘velocity’ has come into 

play, and this is essentially the speed of sound.  Thus, the speed of sound in a solid, technically 

given by 𝜕𝜔/𝜕𝑘 near k=0, is a crucial parameter determining how non-electromagnetic (e.g. 

thermal, but also vibrational and elastic wave) information is transmitted from one end of a 

solid to another. 



 


