
Lecture 15: free electron gas 

Up to this point we have not discussed electrons explicitly, but electrons are the first offenders for most 

useful phenomena in materials.  When we distinguish between metals, insulators, semiconductors, and 

semimetals, we are discussing conduction properties of the electrons.  When we notice that different 

materials have different colors, this is also usually due to electrons.  Interactions with the lattice will 

influence electron behavior (which is why we studied them independently first), but electrons are the 

primary factor in materials’ response to electromagnetic stimulus (light or a potential difference), and 

this is how we usually use materials in modern technology. 

Electrons as particles 

A classical treatment of electrons in a solid, called the Drude model, considers valence electrons to act 

like billiard balls that scatter off each other and off lattice imperfections (including thermal vibrations).  

This model introduces important terminology and formalism that is still used to this day to describe 

materials’ response to electromagnetic radiation, but it is not a good physical model for electrons in 

most materials, so we will not discuss it in detail. 

Electrons as waves 

In chapter 3, when we discussed metallic bonding, the primary attribute was that electrons are 

delocalized. 

In quantum mechanical language, when something is delocalized, it means that its position is ill defined 

which means that its momentum is more well defined.  An object with a well defined momentum but an 

ill-defined position is a plane-wave, and in this chapter we will treat electrons like plane waves, defined 

by their momentum.   

Another important constraint at this point is that electrons do not interact with each other, except for 

pauli exclusion (that is, two electrons cannot be in the same state, where a state is defined by a 

momentum and a spin). 

To find the momentum and energy of the available quantum states, we solve a particle-in-a-box 

problem, where the box is defined by the boundaries of the solid. 

Particle in a Box in one dimension 

An electron of mass m is confined to a one-dimensional box of length L with infinitely high walls. 

We need to solve Schrodinger’s equation with the boundary conditions determined by the box 

ℋψn =
−ℏ2

2𝑚

𝑑2𝜓𝑛

𝑑𝑥2
= 𝜖𝑛𝜓𝑛 

Here, 𝜓𝑛 is the wavefunction of the n-th solution, and 𝜖𝑛 is the energy associated with that eigenstate. 

The boundary conditions (infinitely high walls) dictate that: 

𝜓𝑛(𝑥 = 0) = 0 

𝜓𝑛(𝑥 = 𝐿) = 0 



For all n. 

A solution for the wavefunction which satisfies Schrodinger’s equation and the boundary conditions is: 

𝜓𝑛 = 𝐴𝑠𝑖𝑛(
𝑛𝜋𝑥

𝐿
) 

Where A is a constant. Here, each solution wavefunction corresponds to an integer number of half-

wavelengths fitting inside the box: 
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2
𝑛𝜆𝑛 = 𝐿 

 

Now, plug our ‘guess’ back into Schrodinger’s equation to get the eigenenergies: 
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Each energy level, n, defines a ‘state’ in which we can put two electrons into, one spin up and one spin 

down.  Here is where the approximation/assumption comes in.  We are assuming that our one-particle 

wavefunction is applicable to a many-electron system—that we do not change the wavefunction of one 

electron when we add others to the box.  It turns out that this approximation works reasonably well for 

some simple metals like sodium or copper, and the formalism developed here is an excellent framework 

for describing real many-electron systems where our hopeful assumption doesn’t necessarily hold.  For 

now, we are also assuming that the lattice is not there. 

Lets say we have N electrons and we want to place them into available eigenstates, defined by N.  There 

are two rules we need to follow. 

 Only two electrons per n, one spin up and one spin down (pauli exclusion) (note: if we were not 

using electrons but some other fermion with a different spin, the number of electrons in each 

energy eigenstate would change accordingly) 



 Lower energy levels get filled up first, sort of like pouring water into a container.  We are looking 

to describe the ground state configuration, and you won’t get to the ground state if you fill up 

higher energy levels first. 

The Fermi level (𝜖𝐹) is defined as the highest energy level you fill up to, once you have used up all your 

electrons. 
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(we simply plugged in N/2 for n, since we use up two electrons for each state) 

Effect of temperature 

What has been described thus far is the zero-temperature ground state of a collection of electrons 

confined to a box in 1D.  What finite temperature does is it slightly modifies the occupation probability 

for energies close to the Fermi level, and this is encompassed in the Fermi-Dirac distribution (also called 

the Fermi function).  The probability that a given energy level, 𝜖, is occupied by electrons at a given 

temperature is given by: 

𝑓(𝜖) =
1

𝑒(𝜖−𝜇)/𝑘𝐵𝑇 + 1 
 

The quantity 𝜇 is the chemical potential and it ensures that the number of particles come out correctly.  

At T=0, 𝜇 = 𝜖𝐹, and at temperatures we typically encounter in solid state physics, it does not differ too 

much from that value. 

 



At zero temperature, the Fermi-Dirac distribution represents a sharp cutoff between states that are 

occupied by electrons and states that are unoccupied.  At higher temperature, the Fermi-Dirac function 

introduces a small probability that states with energy higher than the chemical potential contain an 

electron and a symmetric small probability that states below the chemical potential lack an electron.  

Free electron gas in three dimensions 

This toy problem turns out to be applicable to many simple metals such as sodium or copper, and it is a 

generalization of the infinite potential well to three dimensions. 

In three dimensions, the free particle Schrodinger equation is: 
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that the wavefunctions are marked by k instead of by n, and we will see why in a moment. 

If we use boundary conditions that are a 3D generalization of the boundary conditions in 1D, we get 

standing wave solutions of the form: 
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Where 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 are positive integers, and every eigenstate is defined by a unique number of half-

periods of a sine wave in each of the x, y, and z direction (but not necessarily by a unique energy, 

because for example (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧) = (1,0,0) will have the same energy as (𝑛𝑥 , 𝑛𝑦, 𝑛𝑧) = (0,1,0). 

 At this point, it is helpful to start over with a different formalism. 

We consider plane wave wavefunctions of the form 

𝜓𝒌(𝒓) = 𝑒𝑖𝒌∙𝒓 

And periodic boundary conditions of the form 

𝜓(𝑥 + 𝐿, 𝑦, 𝑧) = 𝜓(𝑥, 𝑦, 𝑧) 

𝜓(𝑥, 𝑦 + 𝐿, 𝑧) = 𝜓(𝑥, 𝑦, 𝑧) 

𝜓(𝑥, 𝑦, 𝑧 + 𝐿) = 𝜓(𝑥, 𝑦, 𝑧) 

Plugging the first one into the wavefunction we get: 

𝑒𝑖(𝑘𝑥(𝑥+𝐿)+𝑘𝑦𝑦+𝑘𝑧𝑧) = 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧) 

𝑒𝑖𝑘𝑥𝐿 = 1 

𝑘𝑥 = 0, ±
2𝜋

𝐿
, ±

4𝜋

𝐿
, … 

And similar for ky and kz. 



Plugging the plane wave wavefunction into schrodinger’s equation we get: 
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This is almost equivalent to the version of the eigenenergies that we had earlier, as that the values that 

kx can take on can be expressed as 2𝑛𝑥𝜋/𝐿 (and similar for ky and kz).  The factor of 2 comes from the 

fact that only the even sine wave solutions satisfy periodic boundary conditions.  On the surface it seems 

like these two solutions give contradictory results, but what really matters for a materials electronic 

properties is what happens close to the Fermi energy, and you can work out that you make up the factor 

of 4 (in energy) with a factor of 2 shorter 𝑘𝐹 (which will be defined shortly…) 

As before, we take our N electrons and put them into the available states, filling lowest energy first.  In 

3D this is trickier because multiple states may have the same energy, even though they are marked by 

different 𝑘𝑥, 𝑘𝑦, 𝑘𝑧.  In 3D, our rules for filling up electrons are: 

 Every state is defined by a unique quantized value of (𝑘𝑥 , 𝑘𝑦, 𝑘𝑧) 

 Every state can hold one spin up and one spin down electrons 

 Fill low energy states first.  In 3D, this corresponds to filling up  a sphere in k space, one ‘shell’ at 

a time.   Each shell is defined by a radius k, where 𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2, and every state in the 

shell has the same energy, although different combinations of 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 

 

When we have used up all our electrons, we are left with a filled sphere in k space with radius 𝑘𝐹 (called 

the Fermi momentum) such that 

𝜖𝐹 =
ℏ2

2𝑚
𝑘𝐹

2 

This sphere in k-space has a volume 
4

3
𝜋𝑘𝐹

3 and it is divided into voxels of volume (
2𝜋

𝐿
)

3
 

If we divide the total volume of the sphere by the volume of each ‘box’ and account for the fact that 

each box holds 2 electrons, we get back how many electrons we put in: 

2 ∗

4
3 𝜋𝑘𝐹

3

(
2𝜋
𝐿 )

3 = 𝑁 = 𝑉𝑘𝐹
3/3𝜋2 



Here, 𝑉 = 𝐿3 is the volume of the solid.  We can use this relationship to solve for k_F and show that it 

depends on electron density (N/V) 

𝑘𝐹 = (
3𝜋2𝑁

𝑉
)
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Plugging this back into the expression for 𝜖𝐹 we get: 

𝜖𝐹 =
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As with phonons, the density of states is a useful quantity for electrons.  

It is defined as: 

𝐷(𝜖) ≡
𝑑𝑁

𝑑𝜖
 

We can find it by expressing N in terms of 𝜖 and taking a derivative.  We begin by considering a sphere in 

k-space with an arbitrary radius k and asking how many electrons that will hold 

𝑁(𝑘) = 𝑉𝑘3/3𝜋2 

The relationship between energy and momentum in a free electron gas is pretty straightforward too 

(unlike with phonons): 

𝜖 =
ℏ2𝑘2

2𝑚
 

Solving for k, and plugging in above we get 

𝑁(𝜖) =
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Now we can just take the derivative with respect to energy and get: 

𝐷(𝜖) ≡
𝑑𝑁

𝑑𝜖
=

𝑉

2𝜋2
(

2𝑚

ℏ2
)

3
2

𝜖1/2 

Thus, the density of electron states in 3D is a function of energy.  If you have more electrons, you will 

end up with a higher density of states at the Fermi energy.  It should be noted that as with phonons, the 

functional form of the density of states will depend on if you are thinking of a 1D, 2D, or 3D system. 

At absolute zero, the Fermi sphere has a hard boundary between occupied and unoccupied states.  At 

higher temperature, this boundary becomes fuzzier with increasing occupation permitted outside the 

initial boundary.  The width of this fuzziness is determined by the width of the Fermi-Dirac distribution 

at that temperature, and it is roughly proportional to 𝑘𝐵𝑇.  Notably, the vast majority of electrons in the 

Fermi gas are completely inert because they are buried deep inside the sphere.  Only electrons close to 

the Fermi level are affected by temperature and participate in conduction.  This is quite contrary to the 

conclusions of particle-like treatments of electrons in a metal which assume that all valence electrons 

participate in electronic properties. 



Electron velocity 

There are two ways of extracting an electrons’ velocity in a Fermi gas. 

 From the derivative of the energy vs k (equivalent to what we did for phonons): 𝑣𝑔 =
1

ℏ

𝜕𝜖𝑘

𝜕𝑘
=

ℏ𝑘/𝑚 

 By representing the linear momentum operator as 𝒑 = −𝑖ℏ∇ and applying this to the plane-

wave wavefunction to get 𝒑 = ℏ𝒌 and equating to mv to get 𝒗 = ℏ𝒌/𝑚 

The velocity of electrons at the fermi energy is called the Fermi velocity (𝑣𝐹) and it is given by: 

𝑣𝐹 =
ℏ𝑘𝐹

𝑚
=

ℏ
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Example: Sodium metal 

Sodium metal is one electron beyond a full shell, so it has one valence electron per atom that becomes 

delocalized and contributes to the sea of conduction electrons that we have been representing as plane 

waves.  Lets calculate some of the parameters we have discussed here 

Fermi momentum: 𝑘𝐹 = (
3𝜋2𝑁

𝑉
)

1/3

 

This depends on the electron concentration.  Sodium takes on a BCC structure with a conventional 

(cubic) unit cell dimension of 4.29Å. 

There are 2 valence electrons in this conventional cell, so N/V=2.53 × 1028/𝑚3 

This gives 𝑘𝐹 = 9.1 × 109𝑚−1 

From this, we can get the Fermi energy: 𝜖𝐹 =
ℏ2

2𝑚
𝑘𝐹

2 

𝜖𝐹 = 5.03 × 10−19 𝑗𝑜𝑢𝑙𝑒𝑠 

It is convenient to divide by a factor of the electron charge to put energy in units of electron volts (eV). 

𝜖𝐹 = 3.1 𝑒𝑉 

For comparison, 𝑘𝐵𝑇 at room temperature (300K) is 4.14 × 10−21𝐽𝑜𝑢𝑙𝑒𝑠 or 0.026 eV.  Thus, the energy 

scale of the temperature fuzzing is <1% of the highest energy level at room temperature. 

Another way to think about this is to convert the Fermi energy to a Fermi temperature (𝑇𝐹) by dividing 

by the Boltzmann constant. 

𝑇𝐹 =
𝜖𝐹

𝑘𝐵
= 36,342 𝐾 

Physically, the Fermi temperature for a fermi gas is the temperature when the fermions begin to act like 

classical particles because they do not have to worry about available states already being occupied by 

electrons.  For sodium, the Fermi temperature is waaaay above the melting temperature. 

Finally, let’s calculate the Fermi velocity for sodium: 



𝑣𝐹 =
ℏ

𝑚
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𝑉
)

1/3

= 1.05 × 106𝑚/𝑠 

This is ~1/300 the speed of light, so electrons would get places quite quickly if they didn’t scatter. 


