
Lecture 4- Reciprocal lattice and diffraction 

 Review reciprocal lattice and properties of reciprocal lattice vectors 

 Bragg condition 

 Laue condition 

Review of reciprocal lattice: 

Definition 

Consider direct lattice defined by vectors 𝑹 = 𝑢1𝒂𝟏 + 𝑢2𝒂𝟐 + 𝑢3𝒂𝟑 where 𝑢1, 𝑢2, 𝑢3 are integers and 

𝒂𝟏, 𝒂𝟐, 𝒂𝟑 are primitive translation vectors 

The reciprocal lattice is defined by (primitive) vectors 𝒃𝟏, 𝒃𝟐, 𝒃𝟑 defined in the following way: 

𝒃𝟏 = 2𝜋
𝒂𝟐 × 𝒂𝟑

𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑
 

𝒃𝟐 = 2𝜋
𝒂𝟑 × 𝒂𝟏

𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑
 

𝒃𝟑 = 2𝜋
𝒂𝟏 × 𝒂𝟐

𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑
 

The reciprocal lattice is also a lattice, with all points accessed by reciprocal lattice vector  

𝑮 = 𝜈1𝒃𝟏 + 𝜈2𝒃𝟐 + 𝜈3𝒃𝟑 

Where 𝜈1, 𝜈2, 𝜈3 are integers 

Another important property of the reciprocal lattice is that 𝑹 ∙ 𝑮 = 2𝜋𝑛 where n is an integer.  This 

statement can be derived from the property that 𝒃𝒊 ∙ 𝒂𝒋 = 2𝜋𝛿𝑖𝑗  where 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗 and 𝛿𝑖𝑗 = 1 if 

𝑖 = 𝑗 (and you can use this property to double check that you have really found the reciprocal lattice) 

 Scattering: application of reciprocal lattice 

Old way: 

 

Ray 1 travels a distance 2𝑑𝑠𝑖𝑛𝜃 longer than ray 2 



For them to constructively interfere, this path length difference, must be an integer multiple of the 

wavelength of light, 𝑛𝜆 

This gives the usual formulation of Bragg’s law, 2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆 

Detour: actual numbers 

Bragg’s law will work if d is of similar magnitude to 𝜆 

Object Source of diffracted wave 

Diffraction grating in class (𝑑~1𝜇𝑚) Laser pointer, 𝜆 = 532 𝑛𝑚 

Planes of crystal (𝑑~1 − 10Å) x-rays, 𝜆~0.1 − 10Å 

Planes of crystal (𝑑~1 − 10Å) Neutrons, 𝜆 =
ℎ

𝑝
~0.3 − 2Å 

Planes of crystal (𝑑~1 − 10Å) Electrons, 𝜆 =
ℎ

𝑝
~0.1 − 1Å  

 

Bragg’s law can be reformulated using the reciprocal lattice 

Theorem: the set of reciprocal lattice vectors G determines the possible x-ray reflections

 

In the figure above, the incident beam is a plane wave given by 𝑒𝑖𝒌∙𝑟.  We consider the wave scattered 

from two different positions in the solid: the origin (given by O) and a volume element r away, called dV.  

The wavevector k encodes the wavelength of the light 𝑘 = 2𝜋/𝜆 and also its propagation direction. 

Step 1: find phase difference of the incoming  beams as they travel to O as compared to dV (confusing 

point in figure: k and r have different units) 

The path length difference is given by 𝑟𝑠𝑖𝑛𝜙 

Lets express that path length difference as a phase difference (what fraction of 2pi?) 

In words, the phase difference is given by 
path length difference

 wavelength
∗ 2𝜋.  The first term gives the number of 

wavelengths which fit in the path length difference (not necessarily an integer) and the factor of 2𝜋 tells 

you what fraction of a full wave cycle this path length difference corresponds to.  This gives a phase 

difference of 2𝜋𝑟 𝑠𝑖𝑛𝜙/𝜆 



Remember, 𝑘 =
2𝜋

𝜆
 (definition of wave number) 

Thus, the phase difference of the incoming beam going to O vs going to dV is 𝒌 ∙ 𝒓 

Step 2: find phase difference of diffracted beam from O vs dV 

For the diffracted beam, if we go through the same exercise, we will get −𝒌′ ∙ 𝒓 (the negative factor 

comes because k’ points in the opposite direction relative to r; also, there is a typo in your textbook in 

labeling the outgoing beam, it should be 𝑒𝑖𝒌′∙𝒓) 

Thus the total phase angle difference is (𝒌 − 𝒌′) ∙ 𝒓 

The wave scattered from dV has a phase factor of 𝑒𝑖(𝒌−𝒌′)∙𝒓 relative to the wave scattered from the 

origin located distance r away. 

Define Δ𝐤 = 𝐤′ − 𝐤 

 

Now, we have to account for the fact that we are not just considering two scatterers, but we are 

considering an array of scatterers.  The relative positions of all of these scatters are given by the lattice 

vectors: 𝑹 = 𝑢1𝒂𝟏 + 𝑢2𝒂𝟐 + 𝑢3𝒂𝟑 

The total phase factor from this array of scatterers is given by: 

𝐹(Δ𝒌) = ∑ 𝑒𝑖Δ𝒌∙𝒓𝒋

𝑗

 

The intensity of the scattered beam: 

|𝐹(Δ𝒌)|2 = ∑ 𝑒𝑖Δ𝒌∙(𝒓𝒊−𝒓𝒋)

𝑖,𝑗

 

The separation between any two scatterers in a bravais lattice is given by a translation vector of the 

lattice: 

|𝐹(Δ𝒌)|2 = ∑ 𝑒𝑖Δ𝒌∙(𝑢1𝑎1+𝑢2𝑎2+𝑢3𝑎3)

𝑖,𝑗

 

 



Each of the exponential terms will be equal to 1 if Δ𝒌 = 𝑮 where G is a vector of the reciprocal lattice.  

This is called the laue condition. 

Most scattering experiments used to determine crystal structure are elastic experiments, meaning the 

energy (and wavelength) of the incoming and outgoing beam are the same.  This also means that the 

magnitudes of the wavevectors are equal: 

|𝒌| = |𝒌′| and 𝑘2 = 𝑘′2 

With this, the diffraction condition can be re-written as: 

𝑮 = 𝒌′ − 𝒌 

(𝒌 + 𝑮)2 = 𝑘′2
= 𝑘2 

(𝑘2 + 2𝒌 ∙ 𝑮 + 𝐺2) = 𝑘2 

2𝒌 ∙ 𝑮 + 𝐺2 = 0 

2𝒌 ∙ 𝑮 = 𝐺2 (we can do this because if G is a vector of the reciprocal lattice, so is –G) 

Detour: reminder about Miller indices 

The process of finding miller indices: 

1. Find the intercepts on the axes in terms of the lattice constants 𝑎1, 𝑎2, 𝑎3; Integer or fractional 

intercepts are fine 

2. Take the reciprocals of these numbers and reduce to 3 smallest integers 

3. Express result as 3 numbers in parentheses, usually no commas (hkl) 

Below: examples for cubic lattice 



 

 

Remember, a crystal lattice can be divided up into equivalent planes, a concept which is formalized via 

miller indices in Ch 1 of your textbook.  The spacing between adjacent planes with a specific miller index 

is called d(hkl). 

It turns out that 𝑑(ℎ𝑘𝑙) = 2𝜋/|𝑮| where 𝑮 = ℎ𝒃𝟏 + 𝑘𝒃𝟐 + 𝑙𝒃𝟑 is normal to the plane of interest (we 

will show this for specific examples shortly). 

 

Plugging this result back in to 2𝒌 ∙ 𝑮 = 𝐺2 we get 



2 (
2𝜋

 𝜆
) (𝑠𝑖𝑛𝜃)

2𝜋

𝑑(ℎ𝑘𝑙)
 = (

2𝜋

𝑑(ℎ𝑘𝑙)
)

2

 

(𝜃 is the angle of the incident beam relative to the planes.  The sine comes in because G is normal to the 

plane of interest, and the dot product takes the component of one vector along the direction of the 

other) 

Simplifying the expression above: 

4𝜋𝑠𝑖𝑛𝜃

𝜆
=

2𝜋

𝑑(ℎ𝑘𝑙)
 

2𝑑(ℎ𝑘𝑙)𝑠𝑖𝑛𝜃 = 𝜆 

This is basically the Bragg condition, sans a factor of integer n in front of 𝜆 .  This is missing because the 

definition of miller indices we use explicitly removes common integer divisors.  E.g. (h/n,k/n,l/n) would 

be reduced to just the (hkl) plane by the definition. 

Thus, we have shown the equivalency of Bragg’s law and a scattering formalism using the reciprocal 

lattice. 

Example problem: show equivalence of Bragg’s law and Laue condition for simple cubic lattice with 

lattice spacing a 

a) 100 planes 

 
the spacing between (100) planes in adjacent unit cell is just the lattice spacing a 

We want to show that 𝑑(ℎ𝑘𝑙) = 2𝜋/|𝑮| and 𝑮 = ℎ𝒃𝟏 + 𝑘𝒃𝟐 + 𝑙𝒃𝟑 is normal to the plane of 

interest 

Step 1: extract reciprocal lattice vectors (for simple cubic and other primitive orthogonal crystal 

systems, we can just do this by inspection; reminder 𝑹 = 𝑢1𝑎�̂� + 𝑢2𝑎�̂� + 𝑢3𝑎�̂�). 

𝒃𝟏 =
2𝜋

𝑎
�̂�, 𝒃𝟐 =

2𝜋

𝑎
�̂�, 𝒃𝟑 =

2𝜋

𝑎
�̂� 

For the given values of hkl, we get 𝑮 = 𝒃𝟏 =
2𝜋

𝑎
�̂� 

a. 𝑑(100) =
2𝜋
2𝜋

𝑎

= 𝑎 

b. G points in the x direction which is indeed orthogonal to the plane drawn above (by 

inspection) 



b) (111) planes 

 
First, let’s calculate the minimum spacing between 111 planes in cubic crystal system using 

geometry.  There is an equivalent plane connecting three other vertices of the cube above, and 

each plane is 1/3 of the way along the orthogonal cube diagonal (not so easy to visualize, huh).  

The length of the diagonal of a cube is given by 𝑎√3 and the spacing between adjacent 111 

planes is 
𝑎√3

3
=

𝑎

√3
 

a. 𝑮 =
2𝜋

𝑎
�̂� +

2𝜋

𝑎
�̂� +

2𝜋

𝑎
�̂� 

2𝜋

|𝑮|
=

2𝜋
2𝜋

𝑎
√3

=
𝑎

√3
 (much easier to calculate than figuring out the spacing between planes 

not oriented along crystal axes) 

b. Is 𝑮 =
2𝜋

𝑎
�̂� +

2𝜋

𝑎
�̂� +

2𝜋

𝑎
�̂� normal to the (111) plane?  By inspection, it looks like it is, 

since it points along the cube diagonal.  Lets double check by choosing any vector in the 

plane and making sure that it is orthogonal to G 

Choose the vector −�̂� + �̂�.  This yields zero when it is dotted with G 

 


