
Reciprocal lattice 

This lecture will introduce the concept of a ‘reciprocal lattice’, which is a formalism that takes into 

account the regularity of a crystal lattice introduces redundancy when viewed in real space, because 

each unit cell contains the same information.  There are two concepts you might have seen from earlier 

courses that we will touch on: 

• A periodic structure is most naturally described by its Fourier transform (e.g. if you have a 

function which is a sine wave in the time domain, 𝑓(𝑥) = sin(𝜔𝑡), the essential information 

about this function is captured by its frequency 𝜔) 

• Light is diffracted by a periodic structure, and this can be described by Bragg’s law: 2𝑑𝑠𝑖𝑛𝜃 =

𝑛𝜆, where 𝜆 is a wavelength, n is an integer, and d is the period of the periodic structure.  This 

equation applies equally to a diffraction grating (typically using visible light) or to a crystalline 

solid (typically using x-ray light) 

Definition of reciprocal lattice vectors 

The primitive translation vectors 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 represent the direct lattice. 

The reciprocal lattice vectors, 𝒃𝟏, 𝒃𝟐, 𝒃𝟑, are defined as follows: 

𝒃𝟏 = 2𝜋
𝒂𝟐 × 𝒂𝟑

𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑
 

𝒃𝟐 = 2𝜋
𝒂𝟑 × 𝒂𝟏

𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑
 

𝒃𝟑 = 2𝜋
𝒂𝟏 × 𝒂𝟐

𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑
 

 

• The denominator of all three is a scalar which gives the volume of the primitive cell: 𝑉𝑐 = |𝒂𝟏 ∙

𝒂𝟐 × 𝒂𝟑| 

• If a primitive lattice vector is mutually orthogonal to the other two, its reciprocal lattice vector 

will point in the same direction.  If all three primitive lattice vectors of the direct lattice are 

mutually orthogonal, the reciprocal lattice vectors will all point in the same direction as the 

direct lattice vectors. 

if 𝒂𝒊 ∙ 𝐚𝐣 = 𝛿𝒊,𝒋 for both values of j, 𝒂𝒊||𝒃𝒊 

• If primitive lattice vectors are all mutually orthogonal, the reciprocal lattice vectors point in the 

same direction at the direct lattice vectors but have a magnitude 2𝜋/|𝒂𝒊| 

• Generalization of the previous two statements: 𝒃𝒊 ∙ 𝒂𝒋 = 2𝜋𝛿𝑖,𝑗  where 𝛿𝑖,𝑗 = 1 if i=j and 𝛿𝑖,𝑗 = 0 

if 𝑖 ≠ 𝑗       

 Example: orthorhombic lattice system 

An orthorhombic lattice is comprised of rectangular prism cells with all edges of unequal length.  The 

direct lattice vectors are: 

𝒂𝟏 = 𝑎�̂� 



𝒂𝟐 = 𝑏�̂� 

𝒂𝟑 = 𝑐�̂� 

Where 𝑎 ≠ 𝑏 ≠ 𝑐 

• 𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑 = 𝑎𝑏𝑐 

• 𝒂𝟐 × 𝒂𝟑 = 𝑏𝑐�̂� 

• 𝒂𝟑 × 𝒂𝟏 = 𝑎𝑐�̂� 

• 𝒂𝟏 × 𝒂𝟐 = 𝑎𝑏�̂� 

𝒃𝟏 =
2𝜋

𝑎
�̂� 

𝒃𝟐 =
2𝜋

𝑏
�̂� 

𝒃𝟑 =
2𝜋

𝑐
�̂� 

For cubic, tetragonal, and orthorhombic primitive lattices, reciprocal lattice vectors are straightforward 

to compute—they are in the same direction as the corresponding direct lattice vector with a magnitude 

given by 2𝜋/|𝒂𝒊|.  This is not true for crystal lattice systems in which the primitive lattices are not 

mutually orthogonal.  When in doubt, just calculate using the full equations from earlier. 

The reciprocal lattice is also a lattice (and if the direct lattice is primitive, then so is the reciprocal), and 

points in reciprocal space are mapped out by the set of vectors: 

𝑮 = 𝜈1𝒃𝟏 + 𝜈2𝒃𝟐 + 𝜈3𝒃𝟑 

Where 𝜈1, 𝜈2, 𝜈3 are integers 

Students often wonder whether a reciprocal lattice is a ‘real’ object 

or a conceptual object.  While reciprocal lattices might not be 

encountered in everyday life, many experiments for measuring the 

structure of materials indeed measure the reciprocal lattice not the 

direct lattice (analogy: when you listen to music, each note is 

distinguished by its frequency). 

The image to the left shows neutron scattering measurements on a 

ferroelectric material, where the yellow dots indicate regions of 

maximal signal.  In data like these, (h,k,l) correspond to the x,y,z 

directions in reciprocal space (l is fixed to be zero for this image), 

and the units are such that the reciprocal lattice vectors have unit 

length.  The bright dots on the grid of integers is precisely what you 

would expect from the equation for G above.  For an ideal crystal, 

these bright dots would only be broadened by instrument 

resolution and temperature, but the additional structure in this 

image (e.g. diagonal streaks) indicates deviations from perfect crystallinity, which this paper explores. 

 

Figure 1. Image source: 
https://www.nature.com/articles/s41563-
018-0112-7 



Reciprocal lattice and fourier series 

Now that we know what the reciprocal lattice vectors are, lets get some physical intuition behind them.  

A crystal is composed of infinitely repeating unit cells (unit cell = basis of one or more atoms attached to 

a lattice point).  A crystal is invariant under translation of the form 𝑻 = 𝑢1𝒂𝟏 + 𝑢2𝒂𝟐 + 𝑢3𝒂𝟑 where 

𝑢1, 𝑢2, 𝑢3 are integers and 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 are the lattice vectors.  This is another way of saying that every 

unit cell is identical to every other unit cell.   

When we think of a periodic structure, whether it be a sine wave, a square wave, or some other more 

complicated shape which repeats with period a, we should immediately think of a fourier transform or a 

fourier series.   

Let’s consider the lattice (no basis), which mathematically is represented by a series of delta functions.  

Only consider a one dimensional lattice at first, with spacing a between lattice points. 

 

This structure can be written as: 𝐿(𝑥) = ∑ 𝛿(𝑥 − 𝑢1𝑎)𝑢1
 , where u1 is an integer 

The Fourier transform of this is given by: 

𝑅(𝑞) = ∫ 𝑒𝑖𝑞𝑥𝐿(𝑥)𝑑𝑥
∞

−∞

 

= ∑∫ 𝑒𝑖𝑞𝑥𝛿(𝑥 − 𝑢1𝑎)𝑑𝑥
∞

− ∞𝑢1

 

Aside: generally, the FT of a delta function is given by ∫ 𝑒𝑖𝑞𝑥𝛿(𝑥 − 𝑥0)𝑑𝑥 = 𝑒𝑖𝑞𝑥0
∞

− ∞
 

Also, the FT is often expressed with a factor of 2pi in the exponent, but we will account for that later 

= ∑𝑒𝑖𝑞𝑢1𝑎

𝑢1

= ∑cos(𝑞𝑢1𝑎) + 𝑖𝑠𝑖𝑛(𝑞𝑢1𝑎)

𝑢1

 

Simplification: we only need to keep the cosine term because the sum goes over positive and negative 

values of u1 and sin(−𝑥) = −sin (𝑥) 

𝑅(𝑞) = ∑cos(𝑞𝑢1𝑎)

𝑢1

 

For arbitrary values of q, this sum will tend to zero as the number of terms goes to infinity.  This can only 

be avoided if specific values of q are chosen: 



𝑞 = integer ×
2𝜋

𝑎
 

This gives a 1 dimensional lattice with points separated by 2𝜋/𝑎.  This is the reciprocal lattice. 

 

This can be generalized to three dimensions: 

𝐿(�⃑� ) = ∑ 𝛿(𝒓 − (𝑢1𝒂𝟏 + 𝑢2𝒂𝟐 + 𝑢3𝒂𝟑))

𝑢1,𝑢2,𝑢3

 

Where 𝑢1, 𝑢2, 𝑢3 are integers and 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 are lattice vectors which span 3D space 

Take the Fourier transform again same as in 1D: 

𝑅(𝒌) = ∑ 𝑐𝑜𝑠(𝒌 ∙ (𝑢1𝒂𝟏 + 𝑢2𝒂𝟐 + 𝑢1𝒂𝟏))𝑢1,𝑢2,𝑢3
 

Again, the sum will generally be non-zero only if k is a reciprocal lattice vector R(k)  

𝒌 = 𝑘1𝒃𝟏 + 𝑘2𝒃𝟐 + 𝑘3𝒃𝟑 

Thus, one physical interpretation of the reciprocal lattice is that it is the Fourier transform of the direct 

lattice, a mathematical operation which takes into account the repetition of the crystal lattice 

 

2nd intuition: reciprocal lattice vectors as specific plane wave states 

Consider a set of points R constituting a bravais lattice and a generic plane wave 𝑒𝑖𝒌∙𝒓 

For a general value of k, such a plane wave will not have the periodicity of the lattice, but for a certain 

choice of k, it will: 

The set of all wavevectors K which yields plane waves with the periodicity of the lattice is known as the 

reciprocal lattice 

The way to state this mathematically, is that the following expression applies for all spatial coordinates r 

(why? Because the R vector is defined as a translation operation which leaves the lattice invariant): 

𝑒𝑖𝑲∙(𝒓+𝑹) = 𝑒𝑖𝑲∙𝒓 

𝑒𝑖𝑲∙𝑹 = 1 



This expression holds if 𝑲 ∙ 𝑹 is an integer multiple of 2𝜋, which we showed in the exercise above 

 

Scattering: application of reciprocal lattice 

Old way: 

 

Ray 1 travels a distance 2𝑑𝑠𝑖𝑛𝜃 longer than ray 2 

For them to constructively interfere, this path length difference, must be an integer multiple of the 

wavelength of light, 𝑛𝜆 

This gives the usual formulation of Bragg’s law, 2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆 

Bragg’s law can be reformulated using the reciprocal lattice 

Theorem: the set of reciprocal lattice vectors G determines the possible x-ray reflections

 

In the figure above, the incident beam is a plane wave given by 𝑒𝑖𝒌∙𝑟.  We consider the wave scattered 

from two different positions in the solid: the origin (given by O) and a volume element r away, called dV.  

The wavevector k encodes the wavelength of the light 𝑘 = 2𝜋/𝜆 and also its propagation direction. 

Step 1: find phase difference of the incoming  beams as they travel to O as compared to dV (confusing 

point in figure: k and r have different units) 



The path length difference is given by 𝑟𝑠𝑖𝑛𝜙 

Lets express that path length difference as a phase difference (what fraction of 2pi?) 

In words, the phase difference is given by 
path length difference

 wavelength
∗ 2𝜋.  The first term gives the number of 

wavelengths which fit in the path length difference (not necessarily an integer) and the factor of 2𝜋 tells 

you what fraction of a full wave cycle this path length difference corresponds to.  This gives a phase 

difference of 2𝜋𝑟 𝑠𝑖𝑛𝜙/𝜆 

Remember, 𝑘 =
2𝜋

𝜆
 (definition of wave number) 

Thus, the phase difference of the incoming beam going to O vs going to dV is 𝒌 ∙ 𝒓 (check graphically 

that the segment we are talking about indeed represents the component of r  that is along k) 

Step 2: find phase difference of diffracted beam from O vs dV 

For the diffracted beam, if we go through the same exercise, we will get −𝒌′ ∙ 𝒓 (the negative factor 

comes because k’ points in the opposite direction relative to r; also, there is a typo in your textbook in 

labeling the outgoing beam, it should be 𝑒𝑖𝒌′∙𝒓) 

Thus the total phase angle difference is (𝒌 − 𝒌′) ∙ 𝒓 

The wave scattered from dV has a phase factor of 𝑒𝑖(𝒌−𝒌′)∙𝒓 relative to the wave scattered from the 

origin located distance r away. 

Define Δ𝐤 = 𝐤′ − 𝐤 

 

Now, we have to account for the fact that we are not just considering two scatterers, but we are 

considering an array of scatterers.  The relative positions of all of these scatters are given by the lattice 

vectors: 𝑹 = 𝑢1𝒂𝟏 + 𝑢2𝒂𝟐 + 𝑢3𝒂𝟑 

The total phase factor from this array of scatterers is given by: 

𝐹(Δ𝒌) = ∑𝑒𝑖Δ𝒌∙𝒓𝒋

𝑗

 

The intensity of the scattered beam: 



|𝐹(Δ𝒌)|2 = ∑𝑒𝑖Δ𝒌∙(𝒓𝒊−𝒓𝒋)

𝑖,𝑗

 

The separation between any two scatterers in a bravais lattice is given by a translation vector of the 

lattice: 

|𝐹(Δ𝒌)|2 = ∑𝑒𝑖Δ𝒌∙(𝑢1𝑎1+𝑢2𝑎2+𝑢3𝑎3)

𝑖,𝑗

 

 

Each of the exponential terms will be equal to 1 if Δ𝒌 = 𝑮 where G is a vector of the reciprocal lattice.  

This is called the Laue condition. 

Most scattering experiments used to determine crystal structure are elastic experiments, meaning the 

energy (and wavelength) of the incoming and outgoing beam are the same.  This also means that the 

magnitudes of the wavevectors are equal: 

|𝒌| = |𝒌′| and 𝑘2 = 𝑘′2 

With this, the diffraction condition can be re-written as: 

𝑮 = 𝒌′ − 𝒌 

(𝒌 + 𝑮)2 = 𝑘′2 = 𝑘2 

(𝑘2 + 2𝒌 ∙ 𝑮 + 𝐺2) = 𝑘2 

2𝒌 ∙ 𝑮 + 𝐺2 = 0 

2𝒌 ∙ 𝑮 = 𝐺2 (we can do this because if G is a vector of the reciprocal lattice, so is –G) 

Detour: Miller indices 

The process of finding miller indices: 

1. Find the intercepts on the axes in terms of the lattice constants 𝑎1, 𝑎2, 𝑎3; Integer or fractional 

intercepts are fine 

2. Take the reciprocals of these numbers and reduce to 3 smallest integers 

3. Express result as 3 numbers in parentheses, usually no commas (hkl) 

Below: examples for cubic lattice 



 

 

Remember, a crystal lattice can be divided up into equivalent planes, a concept which is formalized via 

miller indices in Ch 1 of your textbook.  The spacing between adjacent planes with a specific miller index 

is called d(hkl). 

It turns out that 𝑑(ℎ𝑘𝑙) = 2𝜋/|𝑮| where 𝑮 = ℎ𝒃𝟏 + 𝑘𝒃𝟐 + 𝑙𝒃𝟑 is normal to the plane of interest (we 

will show this for specific examples shortly). 

 

Plugging this result back in to 2𝒌 ∙ 𝑮 = 𝐺2 we get 



2 (
2𝜋

 𝜆
) (𝑠𝑖𝑛𝜃)

2𝜋

𝑑(ℎ𝑘𝑙)
 = (

2𝜋

𝑑(ℎ𝑘𝑙)
)
2

 

(𝜃 is the angle of the incident beam relative to the planes.  The sine comes in because G is normal to the 

plane of interest, and the dot product takes the component of one vector along the direction of the 

other) 

Simplifying the expression above: 

4𝜋𝑠𝑖𝑛𝜃

𝜆
=

2𝜋

𝑑(ℎ𝑘𝑙)
 

2𝑑(ℎ𝑘𝑙)𝑠𝑖𝑛𝜃 = 𝜆 

This is basically the Bragg condition, sans a factor of integer n in front of  .  This is missing because the 

definition of miller indices we use explicitly removes common integer divisors.  E.g. (h/n,k/n,l/n) would 

be reduced to just the (hkl) plane by the definition. 

Thus, we have shown the equivalency of Bragg’s law and a scattering formalism using the reciprocal 

lattice. 

Methods for measuring crystal structures in reciprocal space 

Bragg’s law will work if d is of similar magnitude to 𝜆 

Object Source of diffracted wave 

Diffraction grating in class (𝑑~1𝜇𝑚) Laser pointer, 𝜆 = 532 𝑛𝑚 

Planes of crystal (𝑑~1 − 10Å) x-rays, 𝜆~0.1 − 10Å 

Planes of crystal (𝑑~1 − 10Å) Neutrons, 𝜆 =
ℎ

𝑝
~0.3 − 2Å 

Planes of crystal (𝑑~1 − 10Å) Electrons, 𝜆 =
ℎ

𝑝
~0.1 − 1Å  

 

Earlier in this lecture, there was a picture of 

neutron scattering data.  Below are some 

other common methods for using x-rays and 

wave-like particles to learn about structure.  I 

will not give too much background about 

measurements, as the intent is just to get 

used to seeing them and understand what 

information is extracted from them. 

The first two experiments deal use x-rays to 

measure rock salt (NaCl).  This material has a 

cubic crystal structure, based on the FCC 

lattice, where each lattice point has one Na 

and one Cl atom. 

 



   

Method 1: Laue uses white’ (multicolor) x-rays light, and is typically used to learn about rotational 

symmetries of a crystal or orient a crystal by finding a symmetric orientation.  It shines a broad 

spectrum x-ray light on the sample in order to meet the Bragg condition for many reciprocal lattice 

points simultaneously.  The image below shows a 4-fold pattern because the NaCl is oriented with one 

of its 4-fold symmetric axes facing the beam.  

  

   

  



  

Method 2: ‘Powder’ x-ray diffraction (XRD) uses monochromatic x-ray light.  Reciprocal lattice points 

are accessed either by rotating the sample (for a single crystal) or by using a ‘powder’ sample which 

has crystallites of all possible orientation.  This is by far the most common technique for characterizing 

crystal structures with x-rays.  This graph should be read in terms of the Bragg formula: 2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆 

where the x-axis is plotted as 2𝜃 because that is the angle difference between the incoming and 

outgoing beam.  The labels above the peaks are the Miller indices.  When the Bragg formula is applied 

to this experiment, 𝜆 is fixed and known, while the material has a fixed number of ways to divide it 

into planes.  Thus only select angles 𝜃 correspond to those select planar spacings, d. 

  

    

 

  



The image below shows Low Energy Electron Diffraction (LEED) data for NaCl.  The electron gun 

shadowing the image is a giveaway that this is some sort of electron 

diffraction technique.  Different reciprocal lattice points (bright 

dots) correspond to different reflection angles of electrons and 

hence different positions on the detector.  Electron diffraction 

techniques are extremely surface sensitive (an atomic layer or two), 

x-rays have slightly deeper penetration depth (a micron or so), and 

neutrons are truly bulk sensitive. 

Figure 2. Image source: 
https://doi.org/10.1016/S0039-
6028(01)01391-7 


