
Lecture 3: electrons 

• Free electron gas 

• Density of states 

• Velocity and mass 

• Metals, insulators, and semiconductors 

• Introducing the lattice back in: Brillouin zones and Fermi surfaces 

• Tight binding model 

Free electron gas in three dimensions 

This toy problem turns out to be applicable to many simple metals such as sodium or copper, and it is a 

generalization of the infinite potential well to three dimensions.  This model makes the following 

assumptions about electrons in a metal: 

• Valence electrons are completely delocalized over the entire solid, such that they are treated as 

waves rather than particles 

• The lattice is absent so we neglect interactions between electrons and lattice (the lattice will be 

put back in later) 

• Electrons do not interact with each other at all, except via Pauli exclusion.  In particular, 

coulomb repulsion is ignored 

In three dimensions, the free particle Schrodinger equation is: 

−
ℏ2

2𝑚
(

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2) 𝜓𝑘(𝑟) = 𝜖𝑘𝜓𝑘(𝑟) 

The wavefunctions are marked by k instead of by n, and we will see why in a moment. 

At this point, it is helpful to start over with a different formalism.   

We consider plane wave wavefunctions of the form 

𝜓𝒌(𝒓) = 𝑒𝑖𝒌∙𝒓 

Where k is a wavenumber or quantum mechanical momentum.  It can be expressed as 𝑘 =
2𝜋

𝜆
 or 𝒑 =

ℏ𝒌 

And periodic boundary conditions of the form 

𝜓(𝑥 + 𝐿, 𝑦, 𝑧) = 𝜓(𝑥, 𝑦, 𝑧) 

𝜓(𝑥, 𝑦 + 𝐿, 𝑧) = 𝜓(𝑥, 𝑦, 𝑧) 

𝜓(𝑥, 𝑦, 𝑧 + 𝐿) = 𝜓(𝑥, 𝑦, 𝑧) 

Periodic boundary conditions better reproduce the fact that the solid looks infinite to the electrons.  The 

formalism above also permits negative values of k as unique solutions, which makes more physical sense 

because of the connection between k and momentum.  Finally, periodic boundary conditions are utilized 

in many modern computational techniques in condensed matter physics. 



Plugging the first one into the wavefunction we get: 

𝑒𝑖(𝑘𝑥(𝑥+𝐿)+𝑘𝑦𝑦+𝑘𝑧𝑧) = 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧) 

𝑒𝑖𝑘𝑥𝐿 = 1 

𝑘𝑥 = 0, ±
2𝜋

𝐿
, ±

4𝜋

𝐿
, … 

And similar for ky and kz. 

Plugging the plane wave wavefunction into schrodinger’s equation we get: 
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As before, we take our N electrons and put them into the available states, filling lowest energy first.  In 

3D this is trickier because multiple states may have the same energy, even though they are marked by 

different 𝑘𝑥, 𝑘𝑦, 𝑘𝑧.  In 3D, our rules for filling up electrons are: 

• Every state is defined by a unique quantized value of (𝑘𝑥 , 𝑘𝑦, 𝑘𝑧) 

• Every state can hold one spin up and one spin down electrons 

• Fill low energy states first.  In 3D, this corresponds to filling up  a sphere in k space, one ‘shell’ at 

a time.   Each shell is defined by a radius k, where 𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2, and every state in the 

shell has the same energy, although different combinations of 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 

 

When we have used up all our electrons, we are left with a 

filled sphere in k space with radius 𝑘𝐹 (called the Fermi 

momentum) such that 

𝜖𝐹 =
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This sphere in k-space has a volume 
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)
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If we divide the total volume of the sphere by the volume of each ‘box’ and account for the fact that 

each box holds 2 electrons, we get back how many electrons we put in: 
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Here, 𝑉 = 𝐿3 is the volume of the solid.  We can use this relationship to solve for 𝑘𝐹 and show that it 

depends on electron density (N/V) 

𝑘𝐹 = (
3𝜋2𝑁

𝑉
)
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Plugging this back into the expression for 𝜖𝐹 we get: 

𝜖𝐹 =
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At absolute zero, the Fermi sphere has a hard boundary between occupied and unoccupied states.  At 

higher temperature, this boundary becomes fuzzier with increasing occupation permitted outside the 

initial boundary (think of a rocky planet like earth vs a gaseous planet like Jupiter).  The width of this 

fuzziness is determined by the width of the Fermi-Dirac distribution at that temperature, and it is 

roughly proportional to 𝑘𝐵𝑇.  Notably, the vast majority of electrons in the Fermi gas are completely 

inert because they are buried deep inside the sphere.  Only electrons close to the Fermi level are 

affected by temperature and participate in conduction.  This is quite contrary to the conclusions of 

particle-like treatments of electrons in a metal which assume that all valence electrons participate in 

electronic properties. 

Density of states 

As with phonons, the density of states is a useful quantity for electrons.  

I like to think of Density of States as a series of “boxes” where electrons 

can live.  Each box is defined by the coordinates which distinguish one 

electron from another.  In the case of a 3D free electron gas, each box is 

defined by unique 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 and spin.  Where the density comes in is at 

each energy interval 𝑑𝜖 we consider ‘how many ‘boxes’ are there?’ 

It is defined as: 

𝐷(𝜖) ≡
𝑑𝑁̃(𝜖)

𝑑𝜖
 

Where 𝑁̃(𝜖) is the number of states as a function of energy.  We can find it by expressing 𝑁̃ in terms of 

𝜖 and taking a derivative.  We begin by considering a sphere in k-space with an arbitrary radius k and 

asking how many electrons that will hold 

𝑁(𝑘) = 𝑉𝑘3/3𝜋2 

The relationship between energy and momentum in a free electron gas is pretty straightforward too 

(unlike with phonons): 

𝜖 =
ℏ2𝑘2

2𝑚
 

Solving for k, and plugging in above we get 

𝑁(𝜖) =
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Now we can just take the derivative with respect to energy and get: 



𝐷(𝜖) ≡
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Thus, the density of electron states in 3D is a function of energy.  If 

you have more electrons, you will end up with a higher density of 

states at the Fermi energy.   

Effect of temperature 

Temperature introduces a ‘cutoff’ by the Fermi-dirac function  

𝑓(𝜖) =
1

𝑒(𝜖−𝜇)/𝑘𝐵𝑇 + 1 
 

Such that some states with 𝜖 > 𝜖𝐹~𝜇 can be occupied and some 

states with 𝜖 < 𝜖𝐹~𝜇.  Temperature only affects states roughly 

within 𝑘𝐵𝑇 of the Fermi energy.  Another way to think of the effect 

of temperature is the fuzzing out of the boundary of the Fermi 

surface.   

Electron velocity 

There are two ways of extracting an electrons’ velocity in a Fermi gas.  These will be applicable even 

when electrons are modeled in a more sophisticated way. 

• From the derivative of the energy vs k (equivalent to what we did for phonons): 𝑣𝑔 =
1

ℏ

𝜕𝜖𝑘

𝜕𝑘
=

ℏ𝑘/𝑚.  Note that this is an example of a very useful and measurable quantity derived directly 

from a materials’ 𝜖 vs 𝑘 relationship.  This (𝜖 vs 𝑘) is called a dispersion relation.  For a free 

electron gas, it is quadratic, but it doe not have to be. 

• By representing the linear momentum operator as 𝒑 = −𝑖ℏ∇ and applying this to the plane-

wave wavefunction to get 𝒑 = ℏ𝒌 and equating to mv to get 𝒗 = ℏ𝒌/𝑚 

The velocity of electrons at the fermi energy is called the Fermi velocity (𝑣𝐹) and it is given by: 

𝑣𝐹 =
ℏ𝑘𝐹

𝑚
=

ℏ

𝑚
(

3𝜋2𝑁

𝑉
)

1/3

 

Effective mass 

Electrons in a crystalline solid often exhibit properties that free electrons do not have.  One of the most 

basic is that they may behave as if they have a different mass (either heavier or lighter) than the free 

electrons mass.  The effective mass (usually written m* or 𝑚𝑒𝑓𝑓) can also be derived from dispersion 

relations 

1

𝑚∗
=

1

ℏ2

𝜕2𝜖𝑘

𝜕𝑘2
 

Electron-like vs hole-like bands 

Charge carriers in a solid sometimes respond to electromagnetic fields as if they have positive charge, 

and this also originates from dispersion relations.  Negative (electron-like) carriers have 𝜖 vs 𝑘 which is 



concave up and positive (hole-like) carriers have 𝜖 vs 𝑘 which is concave down.  The latter case can 

emerge from a free-electron gas once we turn on lattice interactions. 

 

Turning the lattice potential back on: Brillouin zones and band gaps 

So far, we have discussed electrons without the lattice, and now we turn the lattice back on.  Since the 

electron gas originated from atoms giving up some electrons, the realistic lattice we turn on is a periodic 

array of positive charges.  When we turn on the lattice potential, the following things happen.  They are 

sketched below in 1D only, and generalizing to higher dimensions will be done later 

1. The k-axis is divided up into ‘Brillouin zones’ of the same size.  The length of each Brillouin zone 

is a reciprocal lattice vector, which in 1D is 
2𝜋

𝑎
.  This division reflects the periodicity of the lattice 

2. Each Brillouin zone must contain the same information (reflecting periodicity in both real space 

and reciprocal space) 

3. When dispersions cross, gaps open up, with the magnitude of these band gaps generally 

reflecting the strength of the lattice potential.  There are several ways to think about this: 

a. Pauli exclusion: each point on the 𝜖 vs k graph can hold two electrons: one spin up, and 

one spin down.  When two lines cross, you have 4 electrons trying to be in the same 

state, which won’t fly 

b. Bragg reflection: each point where bands cross is related to an equivalent point via a 

reciprocal lattice vector, and these momenta can satisfy the Bragg condition introduced 

in lecture 2: 2𝒌 ∙ 𝑮 = 𝐺2 → 1𝐷 𝑐𝑎𝑠𝑒 → 𝑘 = ±
1

2
𝐺 = ±

𝑛𝜋

𝑎
.  Thus an electron that has 

those specific momenta will be Bragg reflected by the lattice, such that the electronic 

state at that momentum is comprised of a sum of two waves of the same wavelength 

moving in opposite directions.  This is a standing wave with zero group velocity. 



 

Bloch functions 

Bloch’s theorem is one of the most important principles in solid state physics.  It states that the 

solution to the Schrödinger equation with a periodic potential (i.e. a crystal) must have a specific 

form: 

𝜓𝒌(𝒓) = 𝑢𝒌(𝒓)𝑒𝑖𝒌⋅𝒓 

Where 𝑢𝒌(𝒓) has the period of the lattice such that it is invariant under translation by a lattice 

vector (T): 𝑢𝒌(𝒓) = 𝑢𝒌(𝒓 + 𝑻) 

Eigenfunctions of this form are called Bloch functions.  They consist of a product of a plane wave and 

a function which shares the periodicity of the lattice. 

Crystal momentum of an electron 

The Bloch wavefunctions are labeled by an index k (as the free electron wavefunctions were earlier), and 

this quantity, is called crystal momentum.  A few comments about crystal momentum 

• 𝑒𝑖𝒌⋅𝑻 is the phase factor which multiplies a Bloch function when we make a translation by a 

lattice vector T 

• If the lattice potential vanishes in the central equation, we are left with 𝜓𝒌(𝒓) = 𝑒𝑖𝒌⋅𝒓 just like in 

the free electron case 

• Crystal momentum (ℏ𝑘) is like regular momentum in that it enters into conservation laws that 

govern collisions (e.g. electrons with momentum ℏ𝑘 colliding with a phonon with momentum 

ℏ𝑞) 

• Crystal momentum is different from regular momentum in that it is defined only modulo a 

reciprocal lattice vector G.  Thus, if an electron collides with a phonon and is kicked into 

momentum k’, this is expressed in the following way, 𝒌 + 𝒒 = 𝒌′ + 𝑮 



Metals, insulators, and semiconductors 

• Metals have 𝐸𝐹 (Fermi energy) inside a band, such that there are unoccupied states which the 

highest energy electrons can make low-energy excitations into 

• Semiconductors and insulators have 𝐸𝐹 inside band gap, such that the band below 𝐸𝐹 is 

completely full and highest energy electrons must traverse entire band gap to make excitation 

• Semiconductors differ from insulators simply by size of and gap.  Insulators typically have band 

gap larger than optical frequencies, such that they are often transparent.  Semiconductors have 

band gap smaller than optical frequencies 

 

Metals and Fermi surfaces 

In this section, we introduce the periodic lattice potential onto a free electron gas in 2D and 3D.  The 

starting point is Brillouin zones (BZ).  The first BZ is fairly 

straightforward—it is a Wigner-Seitz cell (see lecture 1).   

For higher BZs, I am skipping the procedure for deriving them, 

since this is something one normally looks up.  However, 

these attributes of higher BZs are a good double check if you 

construct them yourself: 

• All BZs must have the same total area (check that 

disjointed regions of BZ 2 & 3 have the same area as one) 

• Disjointed regions of higher BZs must translate into the 

first BZ via reciprocal lattice vectors without overlap (e.g. 

translation only, no rotation) 

Now add electrons to make a Fermi surface! 

 

Starting off with a free-electron model, the Fermi surface in 2D is a circle centered around (𝑘𝑥, 𝑘𝑦) =

(0,0). 

If this circle is small enough to fit entirely within the first Brillouin zone we are done. 

If the circle overfills the first Brillouin zone, we do the following: 



• Superimpose the circle on all the Brillouin zones (extended zone scheme) 

• Consider the portion of 

the Fermi surface that is inside 

each Brillouin zone, and 

translate this back into the first 

Brillouin zone. 

For the example shown here,  

the free electron Fermi surface 

entirely fills the first Brillouin 

zone, partially fills the 2nd, and 

has a small incursion into the 

3rd and 4th.  Only the first 3 

Brillouin zones are shown. 

Although the filled areas of the 

3rd Brillouin zone look 

disconnected, they can be 

shown to form connected 

propeller shapes in the 

repeating zone scheme. 

When this procedure is 

extended to the nearly free 

electron model, where the 

lattice potential is not 

ignored, the following 

considerations are used 

• Interactions of electrons with periodic ionic potential opens gaps at Brillouin zone boundaries 

• Fermi surface will almost always intersect Brillouin zone boundary perpendicular 

• Crystal potential will round sharp corners of fermi surface 

• The total volume enclosed by fermi surface depends only on electron concentrations, and will 

be the same for the free electron case and when the ionic potential is turned on (nearly free 

electron) 

Qualitatively, the Fermi surfaces in the 2nd and 3rd Brillouin zone, for the same example as above, will 

change slightly to the following shapes: 

Notice that electrons almost fill the 

second zone, except for a small 

empty region in the center.  This is 

considered to be a ‘hole-like’ fermi 

surface, because the enclosed 

surface constitutes the absence of 

electrons. In the third zone, electrons 



fill a minority of the area.  This is considered to be an electron-like fermi-surface 

The nearly free electron model (start with free electron gas and turn on lattice potential) can explain 

why some real metals have dominant hole-like charge carriers, and also why the measured charge 

density in many metals is inconsistent with simply counting the number of valence electrons per atom. 

Tight Binding model 

The tight binding model is based on combining wavefunctions of individual atomic orbitals. 

Suppose an isolated atom has potential 𝑈(𝒓) and is in an s-state (spherically symmetric), represented by 

wavefunction 𝜙(𝒓).  Now suppose that there is a crystal of N of these atoms, and the presence of other 

atoms doesn’t much affect the single-atom wavefunction.  The wavefunction of an electron in this whole 

crystal can be expressed as: 

𝜓𝒌(𝒓) = 𝑁−1/2 ∑ 𝑒𝑖𝒌⋅𝒓𝒋𝜙(𝒓 − 𝒓𝑗)

𝑗

 

The first order energy is found by calculating the diagonal matrix elements of the Hamiltonian (where 

the Hamiltonian describes the kinetic and potential energy of electrons in the crystal…but it turns out 

we won’t need to write what it is exactly) 

𝜖𝑘 =< 𝒌|𝐻|𝒌 >= 𝑁−1 ∑ ∑ 𝑒𝑖𝒌⋅(𝒓𝒋−𝒓𝒎) < 𝜙𝑚|𝐻|𝜙𝑗 >

𝑚𝑗

 

Where 𝜙𝑚 ≡ 𝜙(𝒓 − 𝒓𝑚) 

Define a new variable 𝝆𝑚 = 𝒓𝑚 − 𝒓𝑗  

< 𝒌|𝐻|𝒌 >= ∑ 𝑒𝑖𝒌⋅𝝆𝒎

𝑚

∫ 𝑑𝑉𝜙∗(𝒓 − 𝝆𝑚)𝐻𝜙(𝒓) 

Now, we neglect all of the integrals above except for those on the same atom and those between 

nearest neighbors (separated by 𝝆).  This is the tight binding part of the tight binding model: only 

considering orbital overlap with adjacent atoms assumes that electrons do not make excursion far from 

their original atom and are hence, tightly bound.  Note that it is perfectly acceptable, and sometimes 

necessary, to consider second nearest neighbors (2nd most closest atom) or even third and fourth, in the 

tight binding model.  However, the solved examples in the book only involve the nearest neighbors. 

∫ 𝑑𝑉𝜙∗(𝒓)𝐻𝜙(𝒓) = −𝛼 

∫ 𝑑𝑉𝜙∗(𝒓 − 𝝆)𝐻𝜙(𝒓) = −𝛾 

𝛾 can be determined by assuming some specific form of 𝜙.  For example, for two hydrogen atoms in 1s 

states, 𝛾 = 2 (1 +
𝝆

𝑎0
) 𝑒−𝝆/𝑎0 where 𝑎0 is the Bohr radius.  However, in practice, one often one 

determines it empirically from experiments or first-principles theory (e.g. we measure or calculate a 

certain 𝜖𝑘, which is best parametrized by certain values of 𝛼 and 𝛾. 

Thus: 



< 𝒌|𝐻|𝒌 >= −𝛼 − 𝛾 ∑ 𝑒−𝑖𝒌⋅𝝆𝒎

𝑚

= 𝜖𝒌 

To proceed further, we need information about the crystal 

structure.  For a simple cubic structure, 𝝆𝑚 =

(±𝑎, 0,0); (0, ±𝑎, 0); (0,0, ±𝑎) 

Thus, 𝜖𝒌 = −𝛼 − 2𝛾(cos 𝑘𝑥𝑎 + cos 𝑘𝑦𝑎 + cos 𝑘𝑧𝑎) 

A constant energy surface is shown on the left. 

For a BCC crystal structure with 8 nearest neighbors, the 

dispersion is given by: 

𝜖𝒌 = −𝛼 − 8𝛾 cos
1

2
𝑘𝑥𝑎 cos

1

2
𝑘𝑦𝑎 cos

1

2
𝑘𝑧𝑎 

For a FCC structure with 12 nearest neighbors, the dispersion is given by: 

𝜖𝒌 = −𝛼 − 4𝛾(cos
1

2
𝑘𝑦𝑎 cos

1

2
𝑘𝑧𝑎 + cos

1

2
𝑘𝑧𝑎 cos

1

2
𝑘𝑥𝑎 + cos

1

2
𝑘𝑥𝑎 cos

1

2
𝑘𝑦𝑎 

 

 


