
Angle-resolved photoemission spectroscopy (ARPES)

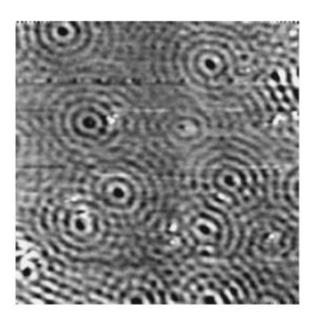
Overview

Outline

Formalism: 3 step Review: model momentum Matrix Looking at space and why elements data: simple we want to go Surface vs bulk there metal Looking at data General principle **ARPES** of ARPES: what we instrumentation do and what we Light source measure Spectrometer Other aspects of Vacuum system experiments Energy/momentum resolution Temperature

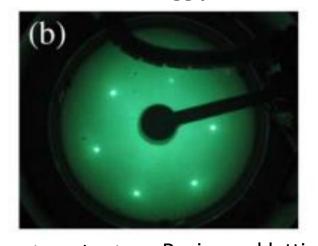
k (crystal momentum) vs **q** (momentum transfer)

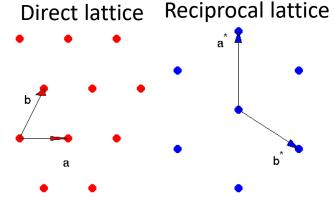
PRB **87**, 075113 (2013)


k_x (Å⁻¹)

0.1

0.2


He la


Cu-111 Friedel Oscillations

 $\lambda = \pi/k_F$ $q = 2k_F$

Cu-111 Bragg peaks

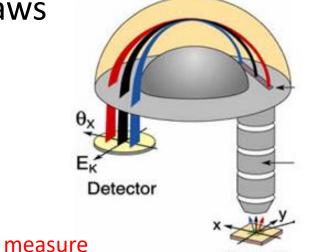
Thin Solid Films **515** 8285 (2007)

PRB 58 7361 (1998)

Structures in momentum space

All materials

- Brillouin zones
- Fermi surfaces
- Band dispersion


Some materials

- Charge density wave gaps (most important for systems without perfect nesting)
- Superconducting gaps
- Spin density wave gaps
- Electron-boson coupling
- Heavy fermion hybridization gaps
- Spin momentum locking
- Surface states
- ...

Angle-Resolved Photoemission spectroscopy overview

- Purpose: measure electronic band dispersion E vs k
- Photoelectric effect, conservation laws

$$\begin{split} E_{kin} &= h \, \nu - \phi - \frac{|E_B|}{|E_B|} \, |\\ \mathbf{p}_{||} &= \hbar \frac{|\mathbf{k}_{||}}{|E_B|} \cdot \sin \, \mathcal{G} \end{split}$$

want

want

Definitions:

$$E_{kin} = kinetic\ energy\ of\ photoelectron\ measure$$

$$hv = photon\ energy\ know$$

$$\phi = work\ function\ know/measure$$

$$E_B = electron\ binding\ energy\ inside\ material, relative\ to\ Fermi\ level$$

$$k_{||} = crystal\ momentum, parallel\ to\ sample\ surface\ plane$$

$$m = mass\ of\ free\ electron\ know$$

$$\vartheta = emission\ angle\ of\ photoelectron\ measure$$

What is actually being measured by ARPES?

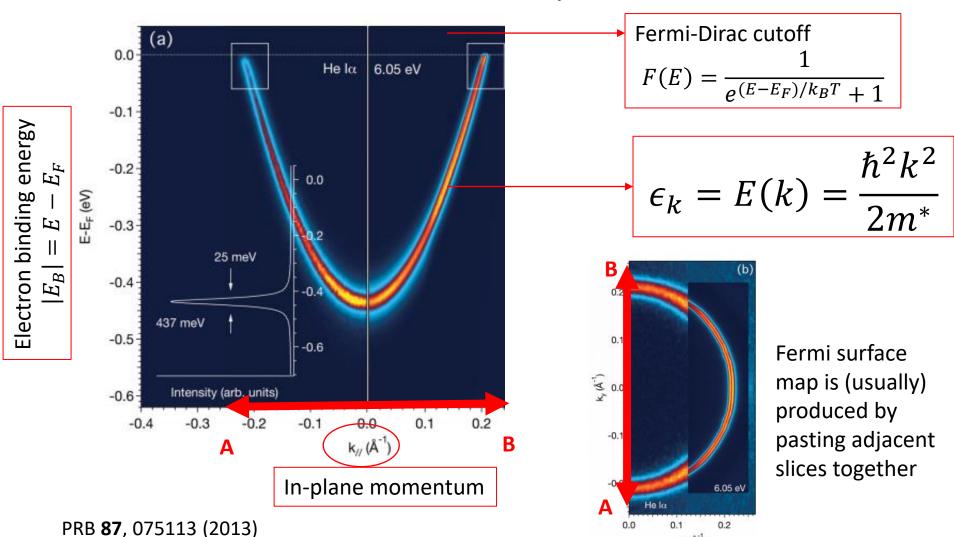
- Electrons live in bands
- Interactions (electron-electron, electron-phonon, etc) can change band dispersions and quasiparticle lifetimes
- Single particle spectral function captures these interactions

Single particle spectral function:
$$A(\mathbf{k}, \omega) = -\frac{1}{\pi} \frac{\sum^{"}(\mathbf{k}, \omega)}{\left[\omega - \varepsilon_{\mathbf{k}} - \sum^{'}(\mathbf{k}, \omega)\right]^{2} + \left[\sum^{"}(\mathbf{k}, \omega)\right]^{2}}$$

Bare band: $\mathcal{E}_{\mathbf{k}}$

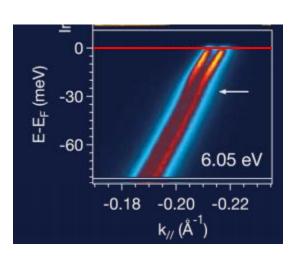
Self Energy:
$$\Sigma(\mathbf{k},\omega) = \Sigma'(\mathbf{k},\omega) + i \Sigma''(\mathbf{k},\omega)$$

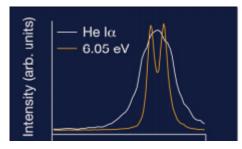
Band position


Linewidth or lifetime

Band structure + Interactions

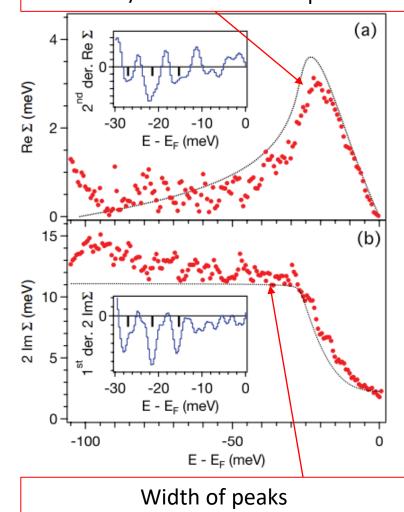
Outline


Formalism: 3 step Review: model momentum Matrix Looking at space and why elements we want to go data: simple Surface vs bulk there metal Looking at data General principle **ARPES** of ARPES: what we instrumentation do and what we Light source measure Spectrometer Other aspects of Vacuum system experiments Energy/momentum resolution Temperature


Band structure: simple metal (Cu 111 surface)

k, (Å-1)

Self energy: simple metal (Cu 111 surface)

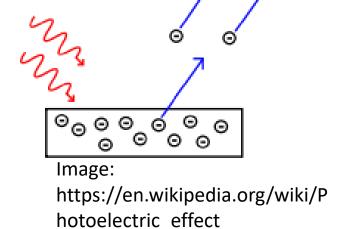


PRB 87, 075113 (2013)

$$A(\mathbf{k}, \omega) = -\frac{1}{\pi} \frac{\sum^{"}(\mathbf{k}, \omega)}{[\omega - \varepsilon_{\mathbf{k}} - \sum^{'}(\mathbf{k}, \omega)]^{2} + [\sum^{"}(\mathbf{k}, \omega)]^{2}}$$

$$\sum (\mathbf{k}, \omega) \rightarrow \sum (\omega) = \sum' (\omega) + i \sum'' (\omega)$$

Measured dispersion minus calculated/assumed bare dispersion

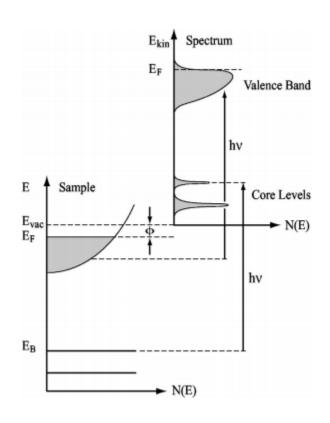


Outline

Formalism: 3 step Review: model momentum **Matrix** Looking at space and why elements data: simple we want to go Surface vs bulk there metal Looking at data General principle **ARPES** of ARPES: what we instrumentation do and what we Light source measure Spectrometer Other aspects of Vacuum system experiments Energy/momentum resolution Temperature

Back to the beginning: 3 step model

$$\begin{split} E_{kin} &= h \, \nu - \phi - \mid E_B \mid \\ \mathbf{p}_{\parallel} &= \hbar \mathbf{k}_{\parallel} = \sqrt{2mE_{kin}} \cdot \sin \, \mathcal{G} \end{split}$$



- 1. Optical excitation of electron in the bulk
- 2. Travel of excited electron to the surface
- 3. Escape of photoelectrons into vacuum

Photoemission intensity is given by product of these three processes (and some other stuff)

1. Optical excitation of electron in bulk

Hufner. *Photoelectron* Spectroscopy (2003) Start: electron in occupied state of N-electron wavefunction, Ψ^N_i

End (of this step): electron in unoccupied state of N electron wavefunction, Ψ_f^N

Sudden Approximation: no interaction between photoelectron and electron system left behind

Probability of transition related to Fermi's golden rule:

$$w_{fi} = \frac{2\pi}{\hbar} \left| \langle \Psi_f^N \right| - \frac{e}{mc} \mathbf{A} \cdot \mathbf{p} | \Psi_i^N \rangle \right|^2 \delta(E_f^N - E_i^N - h\nu)$$

p=electron momentum

A=vector potential of photon

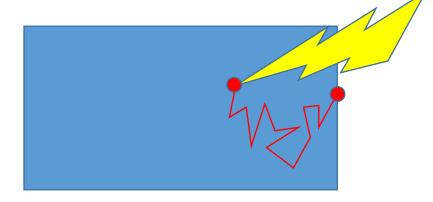
Express as product of 1-electron state and N-1 electron state e.g.: $\Psi_f^N = \mathcal{A}\phi_f^k\Psi_f^{N-1}$

1. Optical excitation of electron in bulk (continued)

$$\langle \Psi_f^N \left| -\frac{e}{mc} \mathbf{A} \cdot \mathbf{p} \right| \Psi_i^N \rangle = \langle \phi_f^{\mathbf{k}} | -\frac{e}{mc} \mathbf{A} \cdot \mathbf{p} | \phi_i^{\mathbf{k}} \rangle \langle \Psi_m^{N-1} | \Psi_i^{N-1} \rangle$$

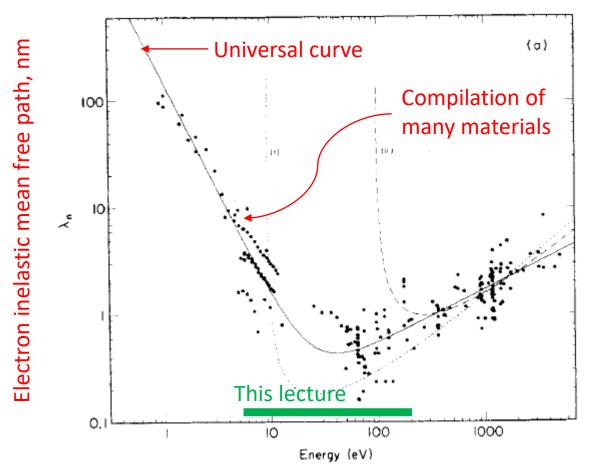
$$\equiv M_{f,i}^{\mathbf{k}} \langle \Psi_m^{N-1} | \Psi_i^{N-1} \rangle$$

 $M_{f,i}^{k}$ = 'ARPES matrix elements'=experimental details which affect measured intensity m=index given to N-1-electron excited state with eigenfunction Ψ_{m}^{N-1} and energy E_{m}^{N-1}


Total photoemission intensity originating from this step:

$$I(\mathbf{k}, E_{kin}) = \sum_{f,i} |M_{f,i}^{\mathbf{k}}|^2 \sum_{m} |\langle \Psi_m^{N-1} | \Psi_i^{N-1} \rangle|^2 \delta(E_{kin} + E_m^{N-1} - E_i^N - h\nu)$$

Consequences of step 1: Observed band intensity is a function of experimental geometry, photon energy, photon polarization


2. Travel of excited electron to the

surface

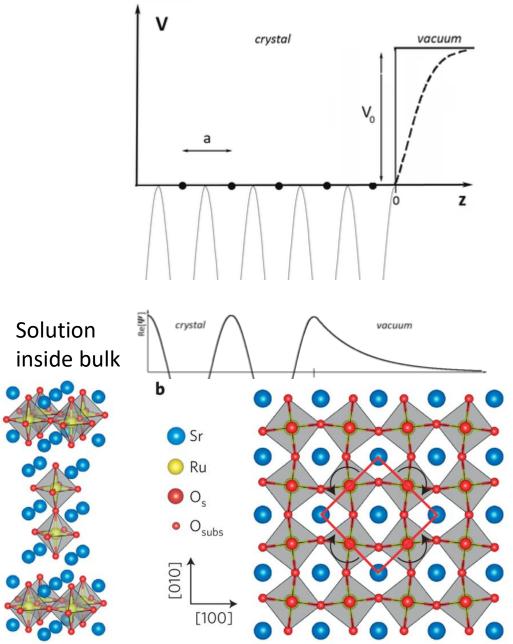
- Excited electrons can scatter traveling to surface
- Typical distance between scattering events = electron mean free path
- What photon energies of light are used in photoemission experiments?
 - 6-6000 eV (this course: 6-150 eV)
- What is the penetration of 20 eV light into copper?
 ~11nm (source: http://xdb.lbl.gov/Section1/Sec_1-6.pdf)
- What is the electron inelastic mean free path of electrons with kinetic energy 20eV? ~0.6 nm (Seah and Dench)
- What is the size of the Cu unit cell? 0.36 nm

Electron mean free path universal curve

Seah and Dench, SURFACE AND INTERFACE ANALYSIS, VOL. 1, NO. 1, 1979

Conclusion of Step 2: electron mean free path determines how deep into a sample ARPES studies

Question: which photon energy ranges give more bulk sensitivity?


Surface vs bulk

Inside bulk: $\Psi_{n,k} = e^{i k \cdot r} u_{n,k}(r)$

At surface: deviation from periodicity

Various scenarios:

- Electronically distinct state at surface (e.g. Shockley state on Cu 111)
- In quasi-2D materials with weak a coupling between layers, surface termination may not matter much
- Sometimes surface states are interesting (e.g. topological insulators)
- Sometimes atoms on surface will relax/move, changing unit cell

Halwidi et al. Nature Materials 15, 450-455 (2016)

3. Escape of photoelectrons into vacuum

- Electron loses work function (Φ) worth of energy
- Transmission probability through surface depends on energy of excited electron and $\boldsymbol{\Phi}$

Outline

Formalism: 3 step Review: model momentum Matrix Looking at space and why elements data: simple we want to go Surface vs bulk there metal Looking at data General principle **ARPES** of ARPES: what we instrumentation do and what we Light source measure Spectrometer Other aspects of Vacuum system experiments Energy/momentum resolution Temperature

General setup of ARPES experiment

photon source

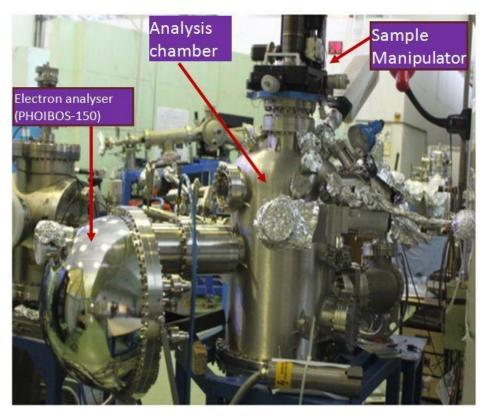


Image source: https://en.wikipedia.org/wiki/Angleresolved_photoemission_spectroscopy

кантайн

energy analyses

Image source: http://www.cat.ernet.in/technology/accel/s rul/indus1beamline/arpes.html

ARPES light sources (6-150 eV)

Type	Available photon energies	Bandwidth/mon ochromaticity	Intensity	Polarization
Laser	6-11 eV; not much variation for a given laser	Can be <<1 meV	Potentially high	Variable polarization
Gas (He, Xe, Ne, Ar) discharge lamp	21.2, 40.8, 8.4, 9.6, 11.6 eV (and more)	Can be small (<1 meV) with monochromator	Sometimes low	random polarization
Synchrotron	Variable; different synchrotrons and endstations specialize in different energy ranges	0.5 to several meV; tradeoff between bandwidth and intensity	tradeoff between bandwidth and intensity	Fixed polarization

$$\begin{split} E_{kin} &= h \, \nu - \phi - \mid E_B \mid \\ \mathbf{p}_{\mid\mid} &= \hbar \mathbf{k}_{\mid\mid} = \sqrt{2mE_{kin}} \cdot \sin \, \mathcal{G} \end{split}$$

$$M_{f,i}^{k} \equiv <\phi_{f}^{k}|-\frac{e}{mc}\boldsymbol{A}\cdot\boldsymbol{p}|\phi_{i}^{k}>$$

ARPES spectrometer/analyzer

nit.edu/ge rch.html

- Select 1D trajectory in momentum space by rotating sample relative to entrance slit
- Electrostatic lens decelerates and focuses electrons onto entrance slit
- Concentric hemispheres kept at potential difference so that electrons of different energy take different trajectory
- 2D detection of electrons, E vs k

- Electrostatic lens images photoemitted electrons onto position sensitive detector (PSD)
- Discriminate photoelectron energies based on different flight times from sample to detector
- 3D detection of electrons, E vs (kx,ky)

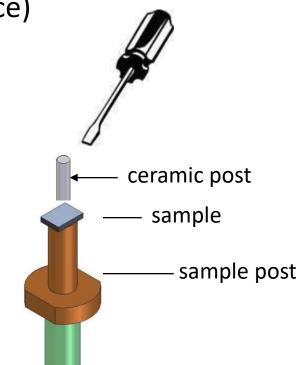
(Ultra high) vacuum chambers

	High vacuum (HV)	Ultrahigh vacuum (UHV)
Pressure	1e-3 to 1e-9 torr	1e-12 to 1e-9 torr
Molecular mfp	10 cm to 1000km	1000 to 100,000 km
Amount of time to deposit a monolayer on sample surface*	.006s to 95 minutes (typical estimate: 6s)	95 minutes to 65 days (typical estimate: 20 hours)

$$*t = \frac{1.7 \times 10^{-6}}{0.6 \cdot p \cdot S}$$

p=pressure in torr

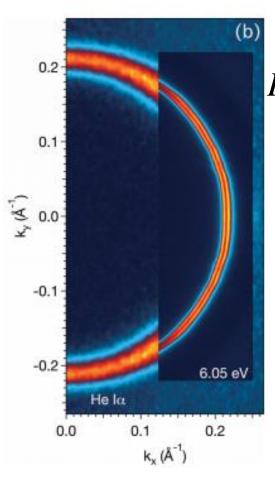
S=sticking coefficient (between 0 and 1)


Ref: Hufner, Photoelectron Spectroscopy

Sample preparation

Achieve atomically clean surface by...

- Cleaving in-situ
- Growing material in-situ
- Sputter-and-anneal (e.g. Cu 111 surface)


Sample cleaving

Outline

Formalism: 3 step Review: model momentum Matrix Looking at space and why elements data: simple we want to go Surface vs bulk there metal Looking at data General principle **ARPES** of ARPES: what we instrumentation do and what we Light source measure Spectrometer Other aspects of Vacuum system experiments Energy/momentum resolution Temperature

Resolution in ARPES experiment

Intensity in ARPES experiment:

 $I(\mathbf{k},\omega) = I_0(\mathbf{k},\nu,\mathbf{A}) f(\omega) A(\mathbf{k},\omega) \otimes R(\Delta k, \Delta \omega)$

"Matrix elements"

Fermi-Dirac Function Resolution Ellipsoid

Convolution

$$A(\mathbf{k}, \omega) = -\frac{1}{\pi} \frac{\sum^{"}(\mathbf{k}, \omega)}{[\omega - \varepsilon_{\mathbf{k}} - \sum^{'}(\mathbf{k}, \omega)]^{2} + [\sum^{"}(\mathbf{k}, \omega)]^{2}}$$

"band structure + Interactions"

PRB **87**, 075113 (2013)

Energy resolution

Origins of energy broadening

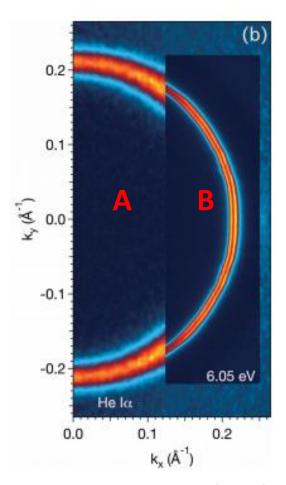
- Light source bandwidth
- Electrical noise
- Spectrometer

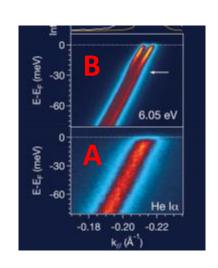
$$E_{pass} = \frac{e\Delta V}{\frac{R_1}{R_2} - \frac{R_2}{R_1}} = 0.5, 1, 2, 5, 10 \text{eV}, \text{ or more}$$

$$\Delta E_a = E_{pass} \left(\frac{w}{R_0} + \frac{\alpha^2}{4} \right)$$

w = width of entrance slit (as small as .05 mm)

 R_0 =average radius of analyzer (~20 cm)


 α =angular resolution (as small as .05°)


Momentum resolution

$$\begin{split} E_{kin} &= h\,\nu - \phi - \mid E_B \mid \\ \mathbf{p}_{\mid\mid} &= \hbar \mathbf{k}_{\mid\mid} = \sqrt{2mE_{kin}} \cdot \sin \mathcal{G} \\ \Delta \mathbf{k}_{\mid\mid} &= \frac{\sqrt{2mE_{kin}} \cdot \cos \mathcal{G}}{\hbar} \,\Delta \mathcal{G} \\ \end{split}$$
 Related to angular resolution of spectrometer and beam spot size

For a given spectrometer, how can one improve momentum resolution?

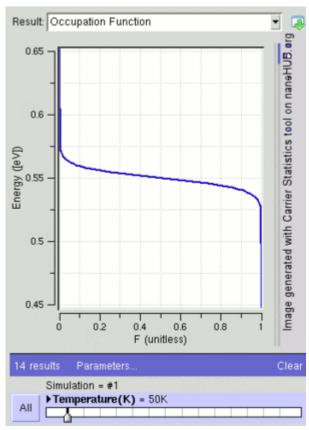
Cu 111 ARPES: origin of superior resolution?

Why is B sharper than A?

PRB **87**, 075113 (2013)

Some notes on resolution...

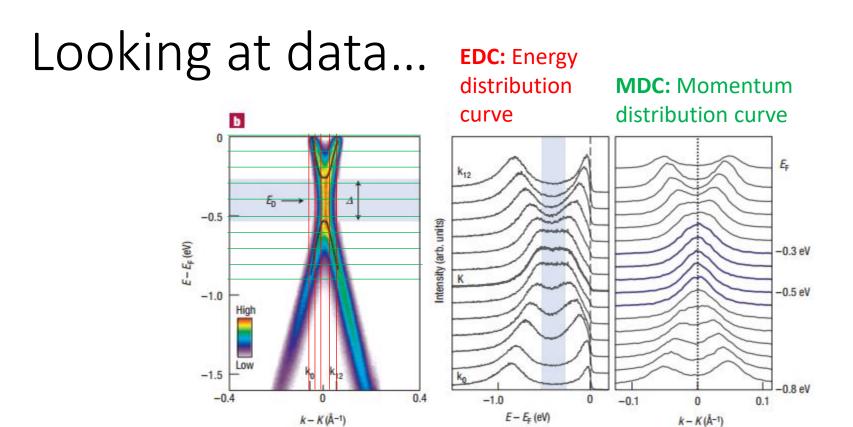
- Instrument resolution represents a convolution of original spectrum with 2D resolution ellipsoid. It does not represent the smallest energy or momentum scale which can be resolved
- Resolution can move spectral features around a bit
- There are sometimes tradeoffs to achieving better resolution (e.g. sacrificing photon intensity or ability to access all of momentum space) which may be unacceptable for some experiments
- Resolution has improved a lot in the last 30 years


What about temperature?

$$I(\mathbf{k},\omega) = I_0(\mathbf{k},\nu,\mathbf{A}) f(\omega) A(\mathbf{k},\omega) \otimes R(\Delta k,\Delta \omega)$$

- Fermi-Dirac cutoff gets broader giving access to more unoccupied states
- Spectra get broader, generally following electron lifetime of material system

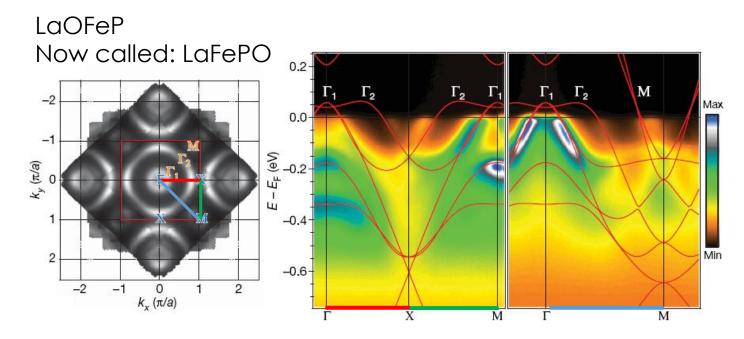
Temperature control during experiment:


- Flow cryostat
- Maximum temperature ~400K
- Minimum temperature
 - 20K standard
 - ~7K with radiation shielding
 - ~1K high end

Source:

Outline

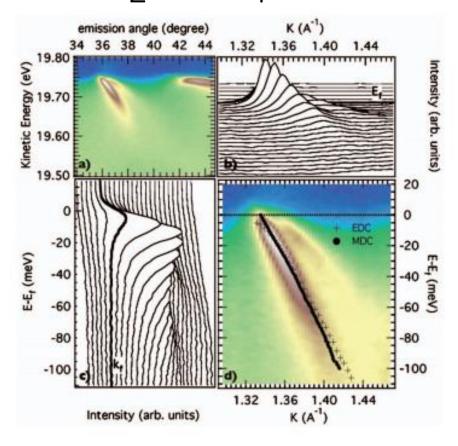
Formalism: 3 step Review: model momentum Matrix Looking at space and why elements data: simple we want to go Surface vs bulk there metal Looking at data General principle **ARPES** of ARPES: what we instrumentation do and what we Light source measure Spectrometer Other aspects of Vacuum system experiments Energy/momentum resolution Temperature



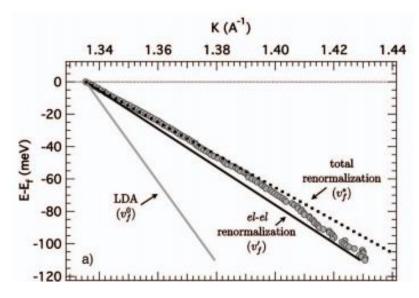
Zhou *et al* Nat. Mater **6** 770 (2007)

Main result: substrate (SiC) breaks sublattice symmetry of graphene, opening a gap at the Dirac point

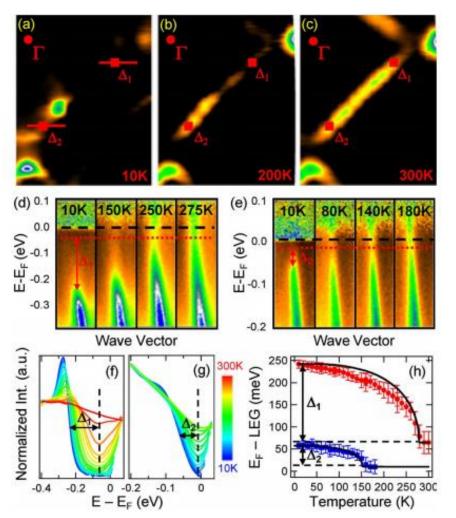
Which analysis (EDC or MDC) illustrates this result better?


Looking at more data...

D. H. Lu, et al. Nature **455** 81 (2008)


- Data taken along 1D trajectories in k-space (cuts); high-symmetry cuts in these data, but not always
- Fermi surface map produced by pasting many 1D cuts together
- Matrix elements: same band has different brightness for different experiment geometries
- Interaction between experiment and theory

More data: quantitative analysis of Sr₂RuO₄ lineshape



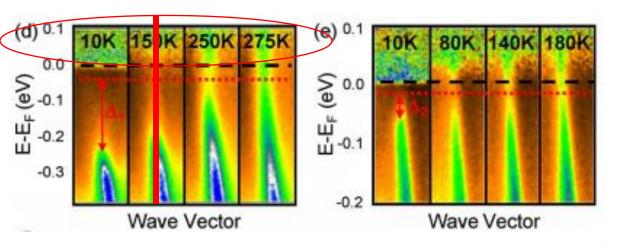
N. Ingle et al. PRB 72, 205114 2005

Why does EDC and MDC analysis give different band position?

Spectral gaps in ARPES: example ErTe3 (CDW system)

Method 1: Disappearance of intensity in fermi surface map (only works if gap opens at E_{ϵ})

Method 2: Energy vs k dispersion


Method 2.5: Energy distribution curve (EDC) + reasonable definition of gap edge

Moore et al. PRB 81, 073102 (2010)

Resources

- Campuzano, Norman, Randeria. Photoemission in the high-Tc superconductors. https://arxiv.org/pdf/condmat/0209476.pdf
- Damascelli, Hussain, Shen. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75 473 (2003)
- Damascelli. Probing the Electronic Structure of Complex Systems by ARPES. Physica Scripta. Vol. T109, 61–74, 2004
 - (https://www.cuso.ch/fileadmin/physique/document/Damascelli ARPES CUSO 2011 Lecture Notes.pdf)
- Hufner, Photoelectron Spectroscopy, Springer (2003)

Extracting spectral gaps

1. Get rid of Fermi-Dirac cutoff by dividing by Fermi-Dirac distribution or symmetrizing (only if there is e-h symmetry)

Extra: imaging of electrons onto entrance slit via electrostatic lens

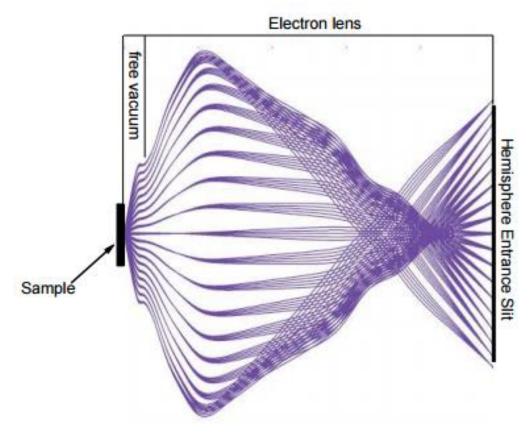


Image from VG Scienta and PhD Thesis of Dr. Ari Deibert Palczewski (http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2629&context=etd)