
Superconductivity 

This short course is intended for students who have an undergraduate-level understanding of solid state 

physics and prerequisite content, are delving into (probably experimental) research on 

superconductivity, and do not have a superconductivity course at their university.  This content primarily 

draws from the following sources: 

Kittel solid state physics Ch10 

Superconductivity, superfluids, and condensates by James Annett 

Introduction to superconductivity by Michael Tinkham 

The outline of this lecture is 

 

• Experimental survey 

• London equations 

• Coherence length 

• Brief overview of Ginzburg-Landau  

• Brief overview of BCS theory 

• Josephson junctions 

• Superconducting phase,  pairing symmetries, and different types of superconductors 

 

Survey of experimental properties 

Superconductors are characterized by two experimental observables: zero resistivity that onsets 

suddenly at a transition temperature (Tc) and an expulsion of magnetic field (Meissner effect).  Tc’s in 

excess of 200K have been reported and confirmed, but 

superconductivity is generally considered a low 

temperature phenomenon, with ‘typical’ Tc’s on the 

order of 1-10K. Superconductivity is a macroscopic 

quantum state that forms the ground state of some 

but not all materials.  Many elements on the periodic 

table become superconductors at low temperature, 

some only under high pressure. 



  

Notably a superconductor is different from a 

hypothetical perfect conductor. 

• A metal completely free of defects at 0K 

(something that doesn’t exist) will be a 

perfect conductor because there is nothing to 

scatter electrons, but it will reach the zero 

resistance state gradually, not suddenly as in 

a superconductor 

• A perfect conductor will want to 

maintain its present magnetization in the 

presence of a magnetic field, whereas a 

superconductor will expel magnetic field always 

o If a magnetic field is turned on, both a superconductor and a perfect conductor will set 

up currents to expel it 

o If a magnetic field is already turned on and a superconductor is cooled below its 

transition temperature, it will suddenly expel its magnetic field, while a perfect 

conductor 

There are some superconductors that scientists ‘understand’ (microscopic mechanism of 

superconductivity is explained) and others that are still being researched for the purpose of uncovering 

the mechanism of their behavior.  Many of the topics in this chapter apply to some superconductors, but 

a few apply only to superconductors that are well understood.   

Current applications of superconductors include 

• MRI machines (to produce a large magnetic field in a solenoid with no heating) 

• Detectors for astrophysics (superconductor kept exactly at transition temperature, and any 

impinging particle will heat it up slightly and produce finite resistivity) 

• Definition of the volt (using josephson junctions, a superconducting device we will discuss in 

later lectures 

• Sensitive detectors of small magnetic fields (also using josephson junctions) 

• The most mature quantum computing technology so far (e.g. d-wave) 

Properties shared by all superconductors 

Destruction of superconductivity by magnetic field 



As a note, the figures used when discussing magnetic fields 

in a superconductor come from different sources and use 

different letters to describe related concepts.  To review: 

B=magnetic flux density; units =Tesla; this is what charged 

particles respond to via 𝐹 = 𝑞𝒗 × 𝑩 

H=magnetic field; units= A/m or Oersted; this one takes the 

medium into account 

𝑯 =
𝑩

𝜇0
− 𝑴 

In vacuum, 𝑯 =
𝑩

𝜇0
 in SI units, and in CGS units, H=B 

 

M is the magnetization and 𝜇0 is the vacuum permeability.  In vacuum B and H are proportional and in 

the same direction, but in a medium they do not have to be.  Note B and H are sometimes both called 

magnetic field. 

A sufficiently large magnetic field will destroy superconductivity, and for now this critical magnetic field 

is called 𝐻𝑐 (subtleties coming next).  𝐻𝑐 is a function of temperature, and is highest at zero temperature 

(when superconductivity is strongest) and zero at Tc.  Generally, higher Tc corresponds to higher 𝐻𝑐(𝑇 =

0), but not always.  

Meissner effect 

The Meissner effect is the property that a superconductor expels magnetic field in the superconducting 

state (CGS units) 

𝐵 = 𝐵𝑎 + 4𝜋𝑀 = 0 

𝐵𝑎 is the applied magnetic field, 

and M is the magnetization of the 

specimen.   Note that in CGS units, 

𝐻𝑐 ≡ 𝐵𝑎𝑐  (subscript c=critical, 

subscript a=applied), which is why 

the figures in this section switch 

back and forth.  Note that this 

relation is only exact in specimens 

that have a specific shape so that 

the demagnetizing field is 

irrelevant. 



For some superconductors, the relationship above is obeyed for all magnetic fields, up until the 

magnetic field is so large that it kills superconductivity (𝐻𝑐, where c=critical, more on that later).  These 

are called type-I superconductors.  For other types of 

superconductors (type-II superconductors), the 

relationship above is obeyed up until an intermediate 

magnetic field, 𝐻𝑐1, at which point the superconductor 

expels some but not all of its magnetic field.  

Superconductivity is not completely destroyed until a 

higher magnetic field, 𝐻𝑐2.  For a type-II superconductor in 

the vortex state (𝐻𝑎 > 𝐻𝑐1), magnetic field is allowed to 

enter via small filaments called ‘vortices’.  Each filament 

contains one flux quantum of magnetic flux 

(
ℎ

2𝑒
in SI units or

ℎ𝑐

2𝑒
in CGS).  It is called a vortex because 

the magnetic core is surrounded by a circulating supercurrent (a superconducting current), like a tiny 

tornado. 

Heat Capacity 

Superconductivity constitutes a thermodynamic phase transition, which means that there is a 

discontinuity in free energy (U) or some derivative thereof.  Evidence of these discontinuities is 

measured via heat capacity, and heat capacity (at constant volume) can be connected to entropy via the 

following relations: 

𝐶𝑣(𝑇) ≡ (
𝜕𝑈

𝜕𝑇
)

𝑉,𝑁
 

(
𝜕𝑈

𝜕𝑇
)

𝑉,𝑁
= (

𝜕𝑈

𝜕𝑆
)

𝑉,𝑁
(

𝜕𝑆

𝜕𝑇
)

𝑉,𝑁

= 𝑇 (
𝜕𝑆

𝜕𝑇
)

𝑉,𝑁
 



The entropy as a function of temperature is plotted to the left.  There is a discontinuity at Tc, which 

means that there is a step function in its derivative, which is measured by heat capacity.  The 

temperature dependence of heat capacity below Tc can reveal information about another property of 

superconductors, the superconducting energy gap. 

Energy gap 

Superconductors are characterized by an energy gap which is tied to the Fermi surface.  This gap is 

different than in semiconductors because it arises from superconductivity, not from electron-lattice 

interactions, and it appears all around the Fermi surface, not 

just at the Brillouin zone boundaries. 

The energy gap in a superconductor is centered around 𝐸𝐹 by 

definition.  In some superconductors, the gap is isotropic 

around the entire Fermi surface or fermi surfaces, but in others, 

it may be different in different directions (even zero at some 

points or lines on the Fermi surface called nodes) or on 

different Fermi surfaces. 

In a superconductor, the charge 

carrier unit is not a single 

electron, but a pair of electrons 

called a Cooper pair, and the 

energy gap can physically be 

thought of as the energy required 

to break a Cooper pair. 

The presence of this energy gap 

has consequences for other 

physical observables.  For 

example, if the superconducting gap is non-zero everywhere on the Fermi surface, the superconductor is 

transparent to photons with energy smaller than the gap.  Moreover, the energy gap (both magnitude 

and presence/absence of nodes) manifests in details of the temperature dependence of heat capacity 

below Tc. 

Properties of superconductors we understand 

Isotope effect 

In simple metallic superconductors, for which there is a microscopic theory (later lecture), they are 

characterized by the fact that the superconducting transition temperature varies depending on the 

atomic mass (isotope) of the specimen.  The variation is as follows: 

𝑀𝛼𝑇𝑐 = 𝑐𝑜𝑛𝑠𝑡 

Where M is the average atomic mass,  and 𝛼 is the isotope effect coefficient (a materials dependent 

quantity) typically ~0.5 but a bit smaller.   

London equation 



The London equations date to the 1930s and describe how electric and magnetic fields behave in 

superconductors.  This section is applicable to both conventional and unconventional suprconductors. 

For a superconductor with full expulsion of the magnetic field, the magnetic susceptibility is  𝜒 =
𝑀

𝐵𝑎
=

−
1

4𝜋
 (in CGS units) or 𝜒 = −1 (in SI).  How do we set up electromagnetic fields inside the 

superconductor to make this happen?  The London equation describes this, and it is applicable to all 

superconductors. 

One way to arrive at the London equation is to postulate that in the superconducting state, the current 

density, j, is proportional to the vector potential of the magnetic field, A (𝑩 = ∇ × 𝑨): 

In SI units, this proportionality is written as: 

𝒋 = −
1

𝜇0𝜆𝐿
2 𝑨 

Where 𝜇0 is the permeability of free space, and 𝜆𝐿 is a constant whose physical significance will become 

clear in a little bit.  The equation above is the London equation, and we can express it in another way by 

taking the curl of both sides 

∇ × 𝒋 = −
1

𝜇0𝜆𝐿
2 𝑩 

The London equation is assumed to be written in the London gauge where ∇ ⋅ 𝑨 = 0 and 𝑨𝑛 = 0 on any 

external surface through which no external current is fed.  This also implies that ∇ ⋅ 𝒋 = 0 and 𝒋𝑛 = 0 

Using the Maxwell equation ∇ × 𝑩 −
1

𝑐2

𝜕𝐸

𝜕𝑡
= 𝜇0𝒋 and assuming there is no time varying electric field, we 

get 

∇ × 𝑩 = 𝜇0𝒋 

We can take the curl of both sides to obtain 

∇ × ∇ × 𝑩 = −∇2𝑩 = 𝜇0∇ × 𝒋 

( the second step uses the vector calculus identity ∇ × ∇ × 𝑩 = ∇(∇ ⋅ 𝑩) − ∇2𝑩 where the first term on 

the right is zero because there are no magnetic monopoles) 

This can be combined with the London equation to give: 

∇2𝑩 =
𝑩

𝜆𝐿
2 



Notably, a uniform solution (𝐵(𝑟) = 𝐵0 = 𝑐𝑜𝑛𝑠𝑡) is not allowed unless 𝐵0 = 0, and this perfectly 

captures the fact that a superconductor will not support and internal magnetic field.  The equation from 

a few steps ago ensures that 𝑗 = 0 in 

a region where B=0. 

The solution to the equation above 

is a decaying exponential.   Assuming 

a semi-infinite superconductor with 

magnetic field B(0) on the surface, 

the field inside the superconductor 

is given by: 

𝐵(𝑥) = 𝐵(0)𝑒−𝑥/𝜆𝐿  

Thus, 𝜆𝐿 measures the depth of 

penetration of the magnetic field 

and it is known as the London 

penetration depth.  Quantitatively, 

this materials-dependent length 

scale varies from 15-300 nm at zero temperature 

 

We can also find a similar equation for current density: 

∇ × ∇2𝑩 =
∇ × 𝑩

𝜆𝐿
2   

∇2(∇ × 𝑩) =
∇ × 𝑩

𝜆𝐿
2   

∇2(μ0𝒋) =
μ0𝒋

𝜆𝐿
2  

∇2𝒋 =
𝒋

𝜆𝐿
2 

Thus, current also decays exponentially from the surface of a superconductor, with a length set by the 

London penetration depth.  This means that: 

• If a superconductor is placed in a magnetic field, ‘screening currents’ will spontaneously occur in 

the superconductor to oppose this magnetic field, and these screening currents are confined 

only to the surface of a superconductor over a depth set by 𝜆𝐿 

• If a current deliberately flows through a superconductor, it will also be confined only to the 

surface regions 

The London penetration depth is related to material parameters in the following way: 

𝜆𝐿 = (
𝜖0𝑚𝑐2

𝑛𝑠𝑒2 )

1/2

= (
𝑚

𝜇0𝑛𝑠𝑒2
)

1/2

 



Where m is the effective electron mass, 𝜇0 and 𝜖0 are the permeability and permittivity of free space 

(𝑐2 = 1/𝜇0𝜖0), and 𝑛𝑠 is the superfluid density—the density of electrons (N/V) which participate in 

superconductivity.  Note that a tiny fraction of valence electrons in a metal are involved in 

superconductivity. 

Ginzburg-Landau model 

The Ginzburg-Landau model dates to the early 1950s, and it is applicable to both conventional and 

unconventional superconductors.  The brief overview below skips some steps, and these missing steps 

can be found in J. Annett’s book listed on p1. 

The G-L theory posits an order parameter, that is zero above Tc in the normal state, and non-zero below 

Tc in the superconducting state.  It is complex valued, which we will use in the discussion of the 

josephson effect at the end of these notes. 

𝜓 = {
0,                       𝑇 > 𝑇𝑐

𝜓(𝑇) ≠ 0,       𝑇 < 𝑇𝑐
 

The free energy density is posited to be related to this order parameter in the following way.  Note that 

this formalism is common to other second order phase transitions (e.g. magnetism) 

𝑓𝑠(𝑇) − 𝑓𝑛(𝑇) = 𝑎(𝑇)|𝜓|2 +
1

2
𝑏(𝑇)|𝜓|4 + ⋯ 

Here, 𝑓𝑠 is the free energy in the superconducting 

state, 𝑓𝑛 is the free energy in the normal state, and 

both sides of the equation reflect the free energy 

difference between the normal and superconducting 

state.  

The parameters a,b are phenomenological constants.  

To have a minimum of free energy somewhere, b must 

be positive.  The sign of a will determine if there is one 

minimum at 𝜓 = 0 (a=positive, which must be above 

Tc, as per the definition of order parameter) or if there are two local minima at 𝜓 = ±𝜓0 (a=negative, 

which must be below Tc).  𝜓0 (location of local minima for negative a) can be found as a function of a 

and b by taking the derivative of the quartic equation above wrt |𝜓| 

0 = 2𝑎(𝑡)|𝜓| + 4 ⋅
1

2
𝑏(𝑇)|𝜓|3 → |𝜓|2 = −𝑎(𝑇)/𝑏(𝑇) 

Note that we will usually be talking about the superconducting state where a is negative. 

To lowest order, a(T) and b(T) can be approximated as follows: 

𝑎(𝑇) ≈ 𝑎̇ × (𝑇 − 𝑇𝑐) + ⋯ 
𝑏(𝑇) ≈ 𝑏 + ⋯ 



Here, 𝑎̇, 𝑏 are constants (not temperature dependent).  

There is no 0th order term in the expression for a(T) to 

allow it to change signs across Tc.  We can combine 

previous equations to write an expression for the 

temperature dependence of the order parameter near Tc: 

𝜓 = {

0,                       𝑇 > 𝑇𝑐

(
𝑎̇

𝑏
)

1
2

(𝑇𝑐 − 𝑇)1/2,       𝑇 < 𝑇𝑐

  

Returning back to the original quartic equation, We can 

use earlier values of 𝜓0 to solve for the value of 𝑓𝑠(𝑇) − 𝑓𝑛(𝑇) at 𝜓0….how much does the energy 

decrease by becoming a superconductor?  Since nature has the imperative to minimize energy, the 

negative value will indicate that superconductivity is a thermodynamically favorable state: 

(𝑓𝑠 − 𝑓𝑛)|𝜓=𝜓0
= −

𝑎2(𝑇)

2𝑏(𝑇)
= −

𝑎̇2(𝑇 − 𝑇𝑐)2

2𝑏
= −

𝜇0𝐻𝑐
2

2
 

The RHS of this equation is not justified in these notes (See Annett, Ch4), but 𝜇0𝐻𝑐
2/2 expresses the 

condensation energy as a function of the thermodynamic critical field—another measure of how much 

energy is ‘saved’ by becoming a superconductor. 

G-L theory allows for the order parameter to be spatially inhomogeneous, which is important at surfaces 

and in vortices where superconductivity is disturbed.  These notes focus on the consequences of this 

fact. 

Rewrite the free energy expression to include a gradient of 𝜓 and explicit spatial dependence: 

𝑓𝑠(𝑇) − 𝑓𝑛(𝑇) =
ℏ2

2𝑚∗
|∇𝜓(𝒓)|2 + 𝑎(𝑇)|𝜓(𝒓)|2 +

1

2
𝑏(𝑇)|𝜓(𝒓)|4 + ⋯ 

Here, m* is an effective mass, and there are no magnetic fields. 

Now, many steps are skipped, but generally, we minimize the total free energy of the system (spatial 

integral of equation above) to get a Shrodinger-like equation for 𝜓(𝑟) 

−
ℏ2

2𝑚∗
∇2𝜓(𝑟) + (𝑎 + 𝑏|𝜓(𝑟)|2)𝜓(𝑟) = 0 

Consider this equation in 1D, and make a boundary 

between a superconductor and a normal metal.  In the 

metal, 𝜓 = 0.  Put the boundary at x=0, and x<0 is the 

metal side. 

−
ℏ2

2𝑚∗

𝑑2𝜓(𝑥)

𝑑𝑥2
+ 𝑎(𝑇)𝜓(𝑥) + 𝑏(𝑇)𝜓3(𝑥) = 0 

This can be solved to yield: 

𝜓(𝑥) = 𝜓0 tanh(
𝑥

𝜉(𝑇)√2
) 



Where 𝜉(𝑇) is the Ginzburg-Landau coherence length. This is a ‘healing’ length of a superconductor…if it 

is disturbed locally, it will recover over this length scale, which tends to be several 10s to several 100s of 

nm at zero temperature. 

In the solution to the shrodinger like equation above, 

𝜉(𝑇) = (
ℏ2

2𝑚∗|𝑎(𝑇)|
)

1/2

= 𝜉(0) |
𝑇 − 𝑇𝑐

𝑇𝑐
|

−1/2

 

Where 𝜉(0) is the coherence length at zero temperature.  Coherence length diverges at 𝑇𝑐, reflecting 

the fact that at Tc, the superconductor will have ‘infinite’ healing length…you locally disturb 

superconductivity, and it will not recover. 

Other results of GL theory (these are given without derivation, so you can know where some common 

expressions come from: 

Superfluid density: 𝑛𝑠 = 2|𝜓2| = 2
𝑎̇(𝑇𝑐−𝑇)

𝑏
 

This indicates that the superfluid density in the London equations is pretty much the order parameter. 

London penetration depth: 𝜆(𝑇) = (
𝑚𝑒𝑏

2𝜇0𝑒2𝑎̇(𝑇𝑐−𝑇)
)

1/2
 

This gives the temperature dependence of the London penetration depth, which diverges at Tc 

The ratio 
𝝀(𝑻)

𝝃(𝑻)
= 𝜿 determines whether a superconductor is type I (full expulsion of magnetic field) or 

type II (partial expulsion of magnetic field with magnetic field entering superconductor via vortices: 

Type I: 𝜅 < 1/√2  (𝜆 is larger) 

Type II: 𝜅 > 1/√2 (𝜉 is larger) 

Connection between upper critical magnetic field and coherence length: 

𝜇0𝐻𝑐2(𝑇) =
Φ0

2𝜋𝜉(𝑇)2
 

Where Φ0 is the magnetic flux quantum in a superconductor, Φ0 =
ℎ

2𝑒
 (more on that later).  Note that 

𝐻𝑐2 is the magnetic field required to destroy superconductivity (implicitly via too many vortices). 

This equation implies that there is exactly one flux quantum per unit area 2𝜋𝜉(𝑇)2. 

This can also be connected to 𝐻𝑐, the thermodynamic critical field discussed earlier in this section.  

Details are omitted, but it is just algebra involving equations here 

𝐻𝑐2 = √2 𝜅 𝐻𝑐   

A different derivation of coherence length  

The London penetration depth (𝜆𝐿) is one fundamental length in a superconductor, and the coherence 

length (𝜉) is another.  The coherence length can have several (not unrelated) physical interpretations 



• In a superconductor, the charge carrier unit is two electrons called a ‘Cooper pair’, and these 

two electrons are not necessarily adjacent to each other in real space.  The coherence length 

can be thought of as describing the physical ‘size’ of a Cooper pair 

• If superconductivity is disturbed or destroyed locally, the coherence length represent a ‘healing 

length’ over which it will recover. 

• If a superconductor is interfaced with a non-superconductor, superconductivity will be 

suppressed slightly over a coherence length of the interface (and superconductivity will also 

penetrate into the non-superconductor—the proximity effect) 

A spatial variation in the state of an electronic system requires kinetic energy, as we will see in a 

moment.  We compare a plane wave with a strongly modulated wavefunction.  This derivation relates 

most closely to the second interpretation of the coherence length. 

Plane wave: 𝜓 = 𝑒𝑖𝑘𝑥 

Modulated function: 𝜙(𝑥) = 2−
1

2(𝑒𝑖(𝑘+𝑞)𝑥 + 𝑒𝑖𝑘𝑥) 

Probability density of plane wave is uniform in space: 𝜓∗𝜓 = 𝑒−𝑖𝑘𝑥𝑒𝑖𝑘𝑥 = 1 

Probability density of other wavefunction is modulated with wavevector q: 𝜙∗𝜙 =
1

2
(𝑒−𝑖(𝑘+𝑞)𝑥 +

𝑒−𝑖𝑘𝑥)(𝑒𝑖(𝑘+𝑞)𝑥 + 𝑒𝑖𝑘𝑥) =
1

2
(2 + 𝑒𝑖𝑞𝑥 + 𝑒−𝑖𝑞𝑥) = 1 + cos 𝑞𝑥 

The kinetic energy of the plane wave is 𝜖 =
ℏ2𝑘2

2𝑚
 

The kinetic energy of the modulated distribution is given by: 

∫ 𝑑𝑥 𝜙∗ (−
ℏ2

2𝑚

𝑑2

𝑑𝑥2) 𝜙 =
1

2

ℏ2

2𝑚
[(𝑘 + 𝑞)2 + 𝑘2] ≈

ℏ2𝑘2

2𝑚
+

ℏ2

2𝑚
𝑘𝑞 

Assuming 𝑞 ≪ 𝑘 

The increase in energy in the modulated wavefunction is 
ℏ2

2𝑚
𝑘𝑞, and if this exceeds the superconducting 

gap, 𝐸𝑔, superconductivity is destroyed.  Note that most of the superconductivity literature uses the 

symbol Δ to denote the superconducting gap, but your textbook uses 𝐸𝑔.  We can solve for a critical 

value of q for this to happen, assuming the relevant k is 𝑘𝐹, because superconductivity is an instability of 

the Fermi surface. 

ℏ2

2𝑚
𝑘𝐹𝑞0 = 𝐸𝑔 

The intrinsic coherence length, 𝜉0 = 1/𝑞0, and we can solve for it: 

𝜉0 =
ℏ2𝑘𝐹

2𝑚𝐸𝑔
=

ℏ𝑣𝑓

2𝐸𝑔
 

Superconductivity (at least the kind that we understand) is a macroscopic quantum phenomenon that is 

quite robust against impurities (at least non-magnetic ones), but impurities do decrease the effective 



coherence length.  If the mean free path (measured in the normal state) is given by ℓ and is smaller than 

𝜉0, the two length scales in superconductors are written in the following way: 

Coherence length: 𝜉 = (𝜉0ℓ)1/2 

Magnetic penetration depth: 𝜆 = 𝜆𝐿 (
𝜉0

ℓ
)

1/2
 

BCS theory of superconductivity 

BCS (Bardeen-Cooper-Schrieffer) theory explains superconductivity in metals and intermetallic 

compounds, and this lecture will provide an overview of this theory.  A few results to look forward to: 

• Origin of the energy gap, how this relates to Cooper pairs, and equation to calculate its 

magnitude 

• Role of Fermi surface and electron-phonon coupling in superconductivity 

• 𝑇𝑐 = 1.14 Θ𝑒−1/𝑈𝐷(𝜖𝐹) where Θ is the debye temperature (involvement of phonons), 𝐷(𝜖𝐹) is 

the density of states at the Fermi energy (only electrons close to the Fermi energy matter), and 

U is an attractive electron-phonon interaction. 

As a historical note, superconductivity was discovered in 1911, but BCS theory was not published until 

1957.  In the interim, there were many intriguing wrong theories (see: https://arxiv.org/abs/1008.0447).  

In the years preceding BCS theory, there were a number of smoking gun experiments that pointed 

scientists in the correct direction: 

• Observation of the isotope effect 

(https://journals.aps.org/pr/abstract/10.1103/PhysRev.78.477); read this paper just for the 

opening paragraphs 

• Exponential behavior of low-temperature heat capacity, which implied an energy gap for the 

lowest energy excitations (https://journals.aps.org/pr/abstract/10.1103/PhysRev.96.1442.2 ) 

The first key idea in BCS theory is that there is an effective attraction for electrons near the Fermi 

energy.  Normally, electrons repel each other: 

𝑉(𝒓 − 𝒓′) =
𝑒2

4𝜋𝜖0|𝒓 − 𝒓′|
 

While this is true for free electrons, in a metal, this interaction is screened, and the Thomas-Fermi model 

is the simplest model to describe this, giving an effective interaction of the form: 

𝑉𝑇𝐹(𝒓 − 𝒓′) =
𝑒2

4𝜋𝜖0|𝒓 − 𝒓′|
𝑒−|𝒓−𝒓′|/𝑟𝑇𝐹  

Where 𝑟𝑇𝐹 is the Thomas-fermi screening length.  This gives a repulsive force that is much shorter range. 

The second ingredient is electrons interacting with the lattice. 

As we saw in chapter 5, phonons in a crystal lattice can be treated as a set of quantum harmonic 

oscillators.  The Hamiltonian for this can be written as: 

https://arxiv.org/abs/1008.0447
https://journals.aps.org/pr/abstract/10.1103/PhysRev.78.477
https://journals.aps.org/pr/abstract/10.1103/PhysRev.96.1442.2


𝐻 = ∑ ℏ𝜔𝒒𝜆 (𝑎𝒒𝜆
+ 𝑎𝒒𝜆 +

1

2
) =

𝒒,𝜆

∑ ℏ𝜔𝒒𝜆 (𝑛𝑞𝜆 +
1

2
) =

𝒒,𝜆

 

Where q is the wavevector of the phonon and 𝜆 labels the phonon mode (branch), in the case that there 

is more than one phonon with the same q.  In a 3D solid with N atoms per unit cell, there are 3N phonon 

branches in total.  The harmonic oscillator ladder operators 

can be used to calculate atomic displacement for an atom 

located at position 𝑹𝑖 due to phonons: 

𝛿𝑹𝑖 = ∑ 𝒆𝒒𝜆 (
ℏ

2𝑀𝜔𝒒𝜆
)

1
2

(𝑎𝒒𝜆
+ +

𝒒𝜆

𝑎𝒒𝜆)𝑒𝑖𝒒⋅𝑹𝒊 

Where M is the atomic mass (assuming only one atom per 

unit cell), and 𝒆𝒒𝜆 is the unit vector of the atomic 

displacement of phonon mode 𝒒𝜆. 

This modulation in the atomic position will also modulate the atomic potential of the lattice: 

𝛿𝑉1(𝒓) = ∑
𝜕𝑉1(𝒓)

𝜕𝑹𝑖
𝛿𝑹𝑖

𝑖

 

This is a periodic modulation of the lattice with wavelength 2𝜋/𝑞, and an electron moving through this 

potential will experience diffraction.  If it is initially in Bloch state 𝜓𝒌(𝒓) it 

will be diffracted to Bloch state 𝜓𝒌−𝒒(𝒓).  The extra momentum has been 

provided by the phonon.  One can either think of this process as creating 

a phonon with momentum q or annihilating one with momentum −𝒒.  A 

second electron can also interact with this phonon, and by reciprocity, 

these electrons then interact with each other through exchange of a 

photon.  

The effective interaction between electrons due to exchange of a phonon 

is given by: 

𝑉𝑒𝑓𝑓(𝒒, 𝜔) = |𝑔𝒒𝜆|
2 1

𝜔2 − 𝜔𝒒𝜆
2  

Where 𝑔𝒒𝜆 is the matrix element for scattering an electron from state k to state k+q.  It quantifies the 

strength of electron-phonon coupling for phonon 𝒒𝜆, or the probability for an electron to be scattered 

by phonon 𝒒𝜆.  It turns out that 𝑔𝒒𝜆 is of order √𝑚/𝑀 where m is the electron mass and M is the 

atomic mass.  Because electrons are much lighter than atoms, we can think of electrons and phonons 

being weakly coupled, which allows for this simplified derivation to be valid. 

Further simplifications can be made to the equation above to achieve an approximate solution that 

captures the key physics: 

• Replace 𝑔𝒒𝜆 by 𝑔𝑒𝑓𝑓, a q-independent average value for electron-phonon coupling 



• Replace 𝜔𝒒𝜆 by a ‘typical’ phonon frequency, which is usually taken to be the debye frequency 

𝜔𝐷 

This gives an effective electron-phonon interaction as: 

𝑉𝑒𝑓𝑓 = |𝑔𝑒𝑓𝑓|
2 1

𝜔2 − 𝜔𝐷
2  

Notice that this interacting is attractive (negative) for frequencies less than 𝜔𝐷.  Because 

superconductivity is a low temperature phenomenon, typically only low frequencies (≪ 𝜔𝐷) will be 

relevant.  Thus, the interaction is always attractive, and can be rewritten in its final form, 𝑉𝑒𝑓𝑓 =

−|𝑔𝑒𝑓𝑓|
2

.  The key insight of BCS theory is that electrons near the Fermi surface are susceptible to 

attractive interactions with one another. 

The corresponding term in the Hamiltonian, which we will use in the next section, is given by: 

𝐻1 = −|𝑔𝑒𝑓𝑓|
2

∑ 𝑐𝒌𝟏+𝒒𝜎1

+ 𝑐𝒌𝟐−𝒒𝜎2

+ 𝑐𝒌𝟏𝜎1
𝑐𝒌𝟐𝜎2

 

Which corresponds to scattering an electron from momentum k1 

and spin 𝜎1 to momentum k1+q and an electron from momentum 

k2 and spin 𝜎2 to momentum k2-q 

 

Cooper pairs 

The next step after the presence of an attractive interaction is the 

formation of pairs.  The charge carrier unit in a superconductor is 

not a single electron, but a pair of electrons called a Cooper pair. 

Consider a spherical Fermi 

surface where all states 𝑘 < 𝑘𝐹 are occupied.  Now consider 

placing two extra electrons outside the Fermi surface.  The two-

particle wavefunction of these extra electrons is: 

Ψ(𝒓𝟏, 𝜎1, 𝒓𝟐, 𝜎2) = 𝑒𝑖𝑘𝑐𝑚⋅𝑅𝑐𝑚𝜑(𝒓𝟏 − 𝒓𝟐)𝜙𝜎1,𝜎2

𝑠𝑝𝑖𝑛
 

Where 𝑅𝑐𝑚 is the center of mass position of the pair, ℏ𝑘𝑐𝑚 is the 

total momentum of the pair. 𝜑 is the spatial part of the two-

electron wavefunction and 𝜙 is the spin part.  The spin part is 

usually a singlet: 

𝜙𝜎1,𝜎2

𝑠𝑝𝑖𝑛
=

1

√2
(| ↑↓> −| ↓↑>) 

Fermion antisymmetry implies that Ψ(𝒓𝟏, 𝜎1, 𝒓𝟐, 𝜎2) = −Ψ(𝒓𝟐, 𝜎2, 𝒓𝟏, 𝜎1).  Since the spin function is odd 

with respect to exchange of particles, the spatial part must be even. 

Expanding 𝜑(𝒓𝟏 − 𝒓𝟐) in terms of bloch waves gives: 



𝜑(𝒓𝟏 − 𝒓𝟐) = ∑ 𝜑𝒌𝑒𝑖𝒌⋅(𝒓𝟏−𝒓𝟐)

𝒌

 

Where 𝜑𝑘 are some expansion coefficients to be found, given the constraint 𝐶 = ∑ 𝜑𝒌𝒌  

The full pair wave function can be written as a sum of slater determinants 

Ψ(𝒓𝟏, 𝜎1, 𝒓𝟐, 𝜎2) = ∑ 𝜑𝒌|
𝜓𝒌↑(𝒓𝟏) 𝜓𝒌↓(𝒓𝟐)

𝜓−𝒌↑(𝒓𝟏) 𝜓−𝒌↓(𝒓𝟐)
|

𝑘

 

Where terms like 𝜓𝒌↓(𝒓𝟐) represent single particle bloch states.  The form of the slater determinant 

implies that Cooper pairs involve electrons at k  and -k which have opposite spins. 

Plugging in this trial wavefunction into the schrodinger equation, including both a kinetic energy term 

and the interaction term from earlier yields: 

𝐸𝜑𝒌 = 2𝜖𝒌𝜑𝒌 − |𝑔𝑒𝑓𝑓|
2

∑ 𝜑𝒌′

𝒌′

 

Where 𝒒 = 𝒌′ − 𝒌 

Using 𝐶 = ∑ 𝜑𝒌𝒌  we can solve the equation above to yield 

𝜑𝒌 = −𝐶|𝑔𝑒𝑓𝑓|
2 1

𝐸 − 2𝜖𝑘
 

Self consistency requires that 

𝐶 = ∑ 𝜑𝒌

𝒌

= −𝐶|𝑔𝑒𝑓𝑓|
2

∑
1

𝐸 − 2𝜖𝑘
𝑘

 

Or equivalently: 

1 = −|𝑔𝑒𝑓𝑓|
2

∑
1

𝐸 − 2𝜖𝑘
𝑘

 

We can convert the sum into an integral over energy via the density of states, and we take this integral 

only up to ℏ𝜔𝐷, because interactions cease to be attractive beyond this point.  The density of states is 

taken outside the integral because it is assumed that it does not change much over the narrow energy 

range being considered. 

1 = −|𝑔𝑒𝑓𝑓|
2

𝐷(𝜖𝐹) ∫ 𝑑𝜖
1

𝐸 − 2𝜖

ℏ𝜔𝐷

0

 

The integral can be solved and the results can be arranged to give 

−𝐸 = 2ℏ𝜔𝐷𝑒−1/|𝑔𝑒𝑓𝑓|
2

𝐷(𝜖𝐹) 

This equation implies that a bound state exists, meaning that it is more energetically favorable for 

electrons to be bound in a pair than to be separated.  The energy scale is set by both the debye 



frequency, and the density of states at 𝜖𝐹 multiplied by the electron-phonon coupling parameter.  Note 

that your textbook uses U to refer to |𝑔𝑒𝑓𝑓|
2

. 

Superconducting gap 

The derivation of the BCS gap parameter, Δ, is very much abridged, but details can be found in 

supplementary reading posted on Canvas (Annett).   

The BCS gap parameter can be expressed as the expectation value of the Cooper pair operator, which 

corresponds to removing electrons of opposite spin from opposite sides of the fermi surface to join the 

superconducting condensate: 

Δ = |𝑔𝑒𝑓𝑓|
2

∑ < 𝑐−𝒌↓𝑐𝒌↑ >

𝒌

= |𝑔𝑒𝑓𝑓| ∑
Δ

2𝐸𝒌
𝒌

 

Where 𝐸𝑘 = √(𝜖𝑘 − 𝜇)2 + |Δ|2.  Physically, ±𝐸𝑘 represent band dispersions in the superconducting 

state.  The expression above is given without derivation, but the derivation can be found in the resource 

mentioned earlier.  Δ can be cancelled from the first and third term above to yield: 

1 =
|𝑔𝑒𝑓𝑓|

2

2
∑

1

√(𝜖𝑘 − 𝜇)2 + |Δ|2
𝒌

 

This expression can be used to find the magnitude of the BCS gap parameter, Δ.  As before, we 

transform the sum over k into an integral over energy using the density of states, and we assume that 

our energy range is small enough such that the density of states can be approximated as a constant, 

𝐷(𝜖𝐹).  We have also set the chemical potential 𝜇 to be zero. 

1 = |𝑔𝑒𝑓𝑓|
2

𝐷(𝜖𝐹) ∫
1

√𝜖2 + |Δ|2
𝑑𝜖

ℏ𝜔𝐷

0

 

This integral can be solved approximately to yield: 

|Δ| = 2ℏ𝜔𝐷𝑒−1/|𝑔𝑒𝑓𝑓|
2

𝐷(𝜖𝐹) 

This is similar to an expression in your textbook for 𝑇𝑐, and you will connect the two in your homework.  

Physically, the BCS gap parameter |Δ| is related to the order parameter of the superconducting state.  It 

is zero above Tc, and increases below Tc until it saturates at low temperature.  Its temperature 

dependence is captured by the following equation, also given without derivation: 

1 = |𝑔𝑒𝑓𝑓|
2

𝐷(𝜖𝐹) ∫
1

√𝜖2 + |Δ|2
tanh

√𝜖2 + |Δ|2

2𝑘𝐵𝑇
𝑑𝜖

ℏ𝜔𝐷

0

 

By taking the limit where Δ → 0, one can obtain the expression for Tc in Kittell: 

𝑘𝐵𝑇𝑐 = 1.13ℏ𝜔𝐷𝑒−1/|𝑔𝑒𝑓𝑓|
2

𝐷(𝜖𝐹) 

This has very similar form to the equation for the gap because both describe the robustness of the 

superconducting state 



At T=0, one can also derive the relationship between Δ(𝑇 = 0) and Tc: 

2Δ(𝑇 = 0) = 3.52𝑘𝐵𝑇𝑐 

Note that all the expressions with very specific numerical prefactors are only applicable in a ‘weak 

coupling’ regime, but they are nevertheless a useful benchmark. 

Phase of superconducting order parameter and Josephson effect 

The superconducting order parameter is a complex order parameter that has both amplitude and phase. 

The wavefunction is also complex and is written in terms of 𝑛𝑠 (the density of superconducting 

electrons)  

𝜓 = √𝑛𝑠 𝑒𝑖𝜃(𝒓)  

The prefactor is materials-dependent and temperature-dependent.  It is equal to zero above Tc and 

reaches its maximum value at T=0.  Earlier in the notes, 𝑛𝑠 was defined in such a way that 𝜓 = √𝑛𝑠/2, 

but it is redefined here to incorporate that factor of 2 into the superfluid density; this is for ease of 

notation in upcoming derivations.  The exponent term is spontaneously chosen when a material cools 

down into the superconducting state, similar to how a ferromagnet spontaneously chooses a 

magnetization direction.  As it is written above, the phase may have a position-dependence, which is 

related to current flow, but it does not always.  It can have a momentum dependence around the Fermi 

surface, 𝜃(𝑘) (more on that later). 

The phase has the following physical consequences 

The velocity of a quantum mechanical charged particle can be expressed as follows: 

𝒗 =
1

𝑚
(𝒑 −

𝑞

𝑐
𝑨) =

1

𝑚
(−𝑖ℏ∇ −

𝑞

𝑐
𝑨) 

The particle flux is given by: 

𝜓∗𝒗𝜓 =
𝑛𝑠

𝑚
(ℏ∇θ −

𝑞

𝑐
𝑨) 

And the current density is given by: 

𝒋 = 𝜓∗𝒗𝜓 =
𝑛𝑠𝑞

𝑚
(ℏ∇θ −

𝑞

𝑐
𝑨) 

Take the curl of both sides, and note that the curl of the gradient of a scalar is zero. 

∇ × 𝒋 = −
𝑛𝑠𝑞2

𝑚𝑐
𝑩 

This is one form of the London equation. 

Consider now a superconducting ring.  Take a closed path C through the interior of the superconducting 

material well away from the surface.  As we learned earlier, current and magnetic field are confined only 



to the surface region of a superconductor, so B and j are 

zero along our contour.  Plugging this in to the earlier 

equation for j yields: 

ℏ𝑐∇𝜃 = 𝒒𝐴 

The change in phase as one traverses around the ring is 

given by: 

∮ ∇𝜃 ⋅ 𝑑𝑙 = 𝜃2 − 𝜃1
𝐶

 

Lets say that our contour represents one revolution around 

the ring.  We must come back to the same value of 𝜓 after 

we traverse the ring.  This means that 

𝜃2 − 𝜃1 = 2𝜋𝑠 

Where s is an integer.  We can now take the contour integral on the other side and use Stokes theorem 

(as we did in Ch9) to change an integral around a loop to a surface integral. 

∮ 𝑨 ⋅ 𝑑𝑙
𝐶

= ∫ (∇ × 𝑨) ⋅ 𝑑𝝈 = ∫ 𝑩 ⋅ 𝑑𝝈 = Φ
𝐶

 

Where 𝑑𝜎 is an element of area on the surface bounded by C, and Φ is the magnetic flux through C.  

Equating the two contour integrals, we get: 

ℏ𝑐2𝜋𝑠 = 𝑞Φ 

Φ = 2𝜋ℏ𝑐𝑠/𝑞 

The charge carrier unit in a superconductor is a Cooper pair of two electrons, so we should use q=-2e.  

This gives the flux inside the superconducting loop as 

Φ = 𝑠Φ0 

Where Φ0 is the magnetic flux quantum, given by 
2𝜋ℏ𝑐

2𝑒
=

ℎ𝑐

2𝑒
 (cgs) or 

2𝜋ℏ

2𝑒
=

ℎ

2𝑒
 (SI). 

In general, the flux through a superconductor can come both from the current in the superconducting 

loop or an externally applied field.  No matter what, the flux through the superconducting loop is 

quantized.  In the presence of an external field, the current inside the superconductor will adjust to 

make this true 

Φ = Φ𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + Φ𝑠𝑐 = 𝑠Φ0 

Additionally, in the absence of resistance, any current that is initiated in a superconducting loop will 

continue on indefinitely (at least in a type I superconductor; vortices in a type II superconductors can 

render this statement untrue).  This is called a persistent current. 

We can calculate how long this persistent current should survive.  The probability per unit time that a 

superconducting loop will lose one quantum of flux (and hence the current will change) is given by: 



P=(attempt frequency)*(activation barrier) 

The activation barrier at temperature T is given by: 

~𝑒Δ𝐹/𝑘𝐵𝑇 

Where the free energy of the barrier is given by: 

Δ𝐹 = (𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑜𝑙𝑢𝑚𝑒 𝑡ℎ𝑎𝑡 𝑡𝑢𝑟𝑛𝑠 𝑛𝑜𝑟𝑚𝑎𝑙) ∗ (𝑒𝑥𝑐𝑒𝑠𝑠 𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑎𝑡𝑒) 

The volume of the ring that must turn normal (cease being superconducting) to allow a quantum of 

magnetic flux to escape is ~𝑅𝜉2 where 𝜉 is the coherence length of the superconductor and R is the 

thickness of the wire.  The excess free energy of the normal state is given by: 𝐻𝑐
2/8𝜋.  This gives an 

approximate value of the excess free energy: 

Δ𝐹 ≈ 𝑅𝜉2𝐻𝑐
2/8𝜋 

Lets add some approximate values for these terms, consistent with experiment: 

• Wire thickness: 10−4𝑐𝑚 

• 𝜉 = 10−4𝑐𝑚 

• 𝐻𝑐 = 103 gauss 

This gives Δ𝐹 ≈ 10−7 ergs.  To calculate the activation barrier, we need some guess for the 

temperature, and 0.1-10K is a reasonable range. 

𝑒Δ𝐹/𝑘𝐵𝑇 ≈ 𝑒−108
≈ 10−4.3×107

 

The attempt frequency (in general) can be estimated from a characteristic energy scale and ℏ.  In a 

superconductor, a characteristic energy scale is the superconducting gap, 𝐸𝑔, which is on the order of 

several meV or smaller.  This gives an attempt frequency of 1012𝑠−1.  Altogether, this gives a probability 

of a superconducting ring to lose one quantum of magnetic flux to be: 

𝑃 ≈ 10−4.3×107
 

This is much older than the age of the universe.  Thus, a current that is set up in a superconducting ring 

will persist forever, unless external conditions such as temperature or (applied) magnetic field change. 

Single particle tunneling 

As we learn early in a quantum mechanics class, quantum 

particles can tunnel through a potential barrier that is not 

infinitely high, and this is true for Cooper pairs as well.  

Consider two metals that are separated from one another 

by a thin insulating barrier.  If neither of these metals are 

superconductors, the IV characteristic of the device will be 

ohmic: V=IR.  However, if one of these metals becomes a 

superconductor, the IV characteristic will be very different.  



There will be very little current flow 

for a voltage up until a critical 

voltage 𝑉𝑐.  After that, the junction 

will look ohmic again.  The voltage 

where current starts to flow 

correspond to the energy required 

to break a Cooper pair: 𝑉 =
𝐸𝑔

2𝑒
=

Δ

𝑒
.  

This is one way of measuring the 

magnitude of a superconducting 

gap.  At zero temperature, the onset 

of current flow is abrupt, but at 

elevated temperatures (still 

superconducting), the transition 

gets rounded. 

If both sides of the insulating barrier are superconductors, this is called a josephson junction.  Several 

things can happen in this case, and three examples are given below: 

• DC josephson effect: DC current flows across junction in the absence of electric or magnetic 

fields 

• AC josephson effect: DC voltage applied across the junction causes current oscillations across 

the junction 

• Macroscopic quantum interference: a device made out of two josephson junctions can show 

interference effects as a function of magnetic field 

DC Josephson effect 

The wavefunction of a superconductor is written in terms of 

𝑛𝑠 (the density of superconducting electrons)  

𝜓 = √𝑛𝑠𝑒𝑖𝜃(𝒓)  

When a superconductor is cooled below Tc, it spontaneously 

chooses a phase, 𝜃.  In a josephson junction, the 

superconductors on either side of the barrier will generically 

choose different phases.  The DC josephson effect is a consequence of this. 

Let 𝜓1 be the wavefunction on one side of the josephson junction, characterized by phase 𝜃1 and 

superfluid density 𝑛𝑠,1 and 𝜓2 be the wavefunction on the other side, characterized by phase 𝜃2 and 

superfluid density 𝑛𝑠,2 

The time dependent Schrodinger equation applied to these two superconductors gives: 

𝑖ℏ
𝜕𝜓1

𝜕𝑡
= ℏ𝑇𝜓2 

𝑖ℏ
𝜕𝜓2

𝜕𝑡
= ℏ𝑇𝜓1 



Where ℏ𝑇 represents a superconducting pair tunneling across the barrier.  Because of quantum 

tunneling, the superconducting state in superconductor 2 leaks into superconductor 1 and vis versa, 

as long as the barrier is thin enough.  Plugging in the full expression for the wavefunction yields: 

𝜕𝜓1

𝜕𝑡
=

1

2
𝑛𝑠,1

−
1
2𝑒𝑖𝜃1

𝜕𝑛𝑠,1

𝜕𝑡
+ 𝑖𝜓1

𝜕𝜃1

𝜕𝑡
= −𝑖𝑇𝜓2 

𝜕𝜓2

𝜕𝑡
=

1

2
𝑛𝑠,2

−
1
2𝑒𝑖𝜃2

𝜕𝑛𝑠,2

𝜕𝑡
+ 𝑖𝜓2

𝜕𝜃2

𝜕𝑡
= −𝑖𝑇𝜓1 

Multiply both equations by 𝑛𝑠,1,2

1

2 𝑒−𝑖𝜃1,2  (choose option (1) for the first equation and option (2) for 

the 2nd.  Also, 𝛿 ≡ 𝜃2 − 𝜃1 

1

2

𝜕𝑛𝑠,1

𝜕𝑡
+ 𝑖𝑛1

𝜕𝜃1

𝜕𝑡
= −𝑖𝑇(𝑛𝑠,1𝑛𝑠,2)

1
2𝑒𝑖𝛿 

1

2

𝜕𝑛𝑠,2

𝜕𝑡
+ 𝑖𝑛2

𝜕𝜃2

𝜕𝑡
= −𝑖𝑇(𝑛𝑠,1𝑛𝑠,2)

1
2𝑒−𝑖𝛿 

Now equate the real and imaginary parts of both equations: 

𝜕𝑛𝑠,1

𝜕𝑡
= 2𝑇(𝑛𝑠,1𝑛𝑠,2)

1
2 sin 𝛿 

𝜕𝑛𝑠,2

𝜕𝑡
= −2𝑇(𝑛𝑠,1𝑛𝑠,2)

1
2 sin 𝛿 

𝜕𝜃1

𝜕𝑡
= −𝑇 (

𝑛𝑠,2

𝑛𝑠,1
)

1
2

cos 𝛿 

𝜕𝜃2

𝜕𝑡
= −𝑇 (

𝑛𝑠,1

𝑛𝑠,2
)

1
2

cos 𝛿 

We can simplify this problem by assuming that the superconductor on both sides of the junction is 

the same material, such that 𝑛𝑠,1 = 𝑛𝑠,2 = 𝑛𝑠.  This gives us the following relations: 

𝜕𝜃1

𝜕𝑡
=

𝜕𝜃2

𝜕𝑡
 

𝜕

𝜕𝑡
(𝜃2 − 𝜃1) = 0 

𝜕𝑛𝑠,2

𝜕𝑡
= −

𝜕𝑛𝑠,1

𝜕𝑡
 

This is essentially a statement that superfluid density overall is 

conserved.  The current flow from one superconductor to another is 

related to the change in superfluid density, which gives the following 

for the junction current: 

𝐽 = 𝐽0 sin 𝛿 = 𝐽0 sin(𝜃2 − 𝜃1) 



𝐽0 is proportional to the transfer interaction T.  What the equation above says is that current will 

flow in a josephson junction in the absence of any applied voltage.  This is the DC josephson effect.   

The IV curve of a josephson junction is shown above. At zero bias voltage, a current 𝑖𝑐 flows.  For 

voltages above 𝑉𝑐, the junction has a finite resistance (notice the ohmic IV behavior), and this is the 

regime of the AC josephson effect. 

AC Josephson effect 

Whereas the DC Josephson effect occurs in the absence of applied voltage, the AC josephson effect 

requires an applied voltage. Normally, a superconductor cannot support a voltage across it (V=IR), 

but because a josephson junction has an insulator inside, it can (the voltage drop happens across the 

insulator not across the superconductor). 

When crossing an insulating barrier, the Cooper pair will gain or lose energy 2eV.  Lets assume that 

the pair is at potential -eV on one side of the barrier and +eV on the other side.  The equations of 

motion are: 

𝑖ℏ
𝜕𝜓1

𝜕𝑡
= ℏ𝑇𝜓2 − 𝑒𝑉𝜓1 

𝑖ℏ
𝜕𝜓2

𝜕𝑡
= ℏ𝑇𝜓1 + 𝑒𝑉𝜓2 

Replace with values of 𝜓1 = √𝑛𝑠,1𝑒𝑖𝜃1(𝒓) and 𝜓2 = √𝑛𝑠,2𝑒𝑖2(𝒓): 

1

2

𝜕𝑛𝑠,1

𝜕𝑡
+ 𝑖𝑛1

𝜕𝜃1

𝜕𝑡
=

𝑖𝑒𝑉𝑛𝑠,1

ℏ
− 𝑖𝑇(𝑛𝑠,1𝑛𝑠,2)

1
2𝑒𝑖𝛿 

1

2

𝜕𝑛𝑠,2

𝜕𝑡
+ 𝑖𝑛2

𝜕𝜃2

𝜕𝑡
=

−𝑖𝑒𝑉𝑛𝑠,2

ℏ
− 𝑖𝑇(𝑛𝑠,1𝑛𝑠,2)

1
2𝑒−𝑖𝛿 

As before, set the real and imaginary parts to be equal: 

𝜕𝑛𝑠,1

𝜕𝑡
= 2𝑇(𝑛𝑠,1𝑛𝑠,2)

1
2 sin 𝛿 

𝜕𝑛𝑠,2

𝜕𝑡
= −2𝑇(𝑛𝑠,1𝑛𝑠,2)

1
2 sin 𝛿 

𝜕𝜃1

𝜕𝑡
= (

𝑒𝑉

ℏ
) − 𝑇 (

𝑛𝑠,2

𝑛𝑠,1
)

1
2

cos 𝛿 

𝜕𝜃2

𝜕𝑡
= −(

𝑒𝑉

ℏ
) − 𝑇 (

𝑛𝑠,1

𝑛𝑠,2
)

1
2

cos 𝛿 

If we again assume that 𝑛𝑠,1 = 𝑛𝑠,2 = 𝑛𝑠 

𝜕

𝜕𝑡
(𝜃2 − 𝜃1) =

𝜕

𝜕𝑡
𝛿 = −2𝑒𝑉/ℏ 

Integrate this equation to get: 



𝛿(𝑡) = 𝛿(0) − 2𝑒𝑉𝑡/ℏ 

The superconducting current is thus given by a similar result as earlier, except with an evolving 

phase: 

𝐽 = 𝐽0 sin[𝛿(0) − 2𝑒𝑉𝑡/ℏ] 

This is an oscillating (AC) current with a frequency 𝜔 =
2𝑒𝑉

ℏ
.  Another way to state this is that the 

measured voltage is related to the frequency of the oscillation and fundamental constants: 𝑉 =
ℏ𝜔

2𝑒
. 

The AC josephson effect has been used a standard for e/h, related to the magnetic flux quantum 

(h/2e), but it is more commonly used as a voltage standard, the josephson voltage standard.  Most 

units have a standard yardstick related to fundamental physical processes that do not depend on 

the laboratory or the time.  For example, the frequency (and time) standard, called the cesium 

standard, comes from measurements of transitions between two hyperfine ground states in Cs-133.  

With this frequency standard and the AC josephson effect, a josephson junction serves as the 

voltage standard. 

Macroscopic quantum interference 

This topic combines the josephson junction (two of them, actually) with earlier concepts of flux 

through a superconducting loop.  The change in superconducting phase around a closed circuit is 

given by: 

𝜃2 − 𝜃1 = (
2𝑒

ℏ𝑐
) Φ 

Consider two Josephson junction in parallel as in the image on 

the left.  This device is called a SQUID or superconducting 

quantum interference device. 

The total current goes from point (1) to point (2), but it can 

take one of two paths to get there: through junction a or 

through junction b. 

𝛿𝑎 ≡ phase difference between points (1) and (2) when current goes through junction a 

𝛿𝑏 ≡ phase difference between points (1) and (2) when current goes through junction b 

The superconducting loop can also accommodate magnetic flux Φ inside, both from an external 

source and from the current in the loop.  This puts restrictions on the relation between 𝛿𝑎 and 𝛿𝑏 

𝛿𝑏 − 𝛿𝑎 = (
2𝑒

ℏ𝑐
) Φ 

𝛿𝑏 = 𝛿0 +
𝑒

ℏ𝑐
Φ 

𝛿𝑎 = 𝛿0 −
𝑒

ℏ𝑐
Φ 



The total current is the sum of the current in branch a and branch b, and each of those is given by 

equations for a single josephson junction discussed earlier 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑎 + 𝐽𝑏 = 𝐽0 {sin (𝛿0 +
𝑒

ℏ𝑐
Φ) + sin (𝛿0 −

𝑒

ℏ𝑐
Φ)} = 2𝐽0 sin 𝛿0 cos

𝑒Φ

ℏ𝑐
 

Because the SQUID ring current will always have the same sign as the driving current, the expression 

above needs to always be positive. 

𝐽𝑡𝑜𝑡𝑎𝑙 = 2𝐽0 sin 𝛿0| cos
𝑒Φ

ℏ𝑐
| 

The current varies with Φ and has maxima when 

𝑒Φ

ℏ𝑐
= 𝑠𝜋 

Where s is an integer.  Note that these values of 

Φ𝑚𝑎𝑥 correspond to integer multiples of the 

magnetic flux quantum (Φ0 =
2𝜋ℏ𝑐

2𝑒
).  Also notice 

that in this configuration of a superconducting 

loop, where there are two josephson junctions 

breaking up the loop, the flux through the loop is not necessarily quantized.   

The current as a function of magnetic flux appears like the image above.  This looks exactly like a 

Fraunhoffer interference pattern in a double slit experiment.  Thus, this is a demonstration of 

macroscopic quantum interference, where the interfering waves are the superconducting 

condensates in the two branches on the SQUID.  Remember that the wavefunction of a 

superconductor looks an awful lot like the wavefunction of a plane wave. 

The SQUID is one of the most applications of superconductivity, as it is used to measure magnetic 

flux or magnetic field.  The SQUID can be made fairly large (~1cm^2), such that the flux changing by 

one magnetic quantum corresponds to a tiny change in magnetic field. One can then count the 

number of minima observed in the current through the SQUID to detect tiny changes in magnetic 

field to high accuracy. 

 

Superconducting phase,  pairing symmetries, and different types of superconductors 

Most of the discussion so far has been either applicable to all superconductors or applicable to 

superconductors we “understand” (those explained by BCS theory).   This section is primarily useful for 

“unconventional” superconductors, many of which have higher order pairing symmetry. 

Earlier in the notes, we discussed superconducting gap (roughly the energy to break a Cooper pair), and 

the superconducting gap was characterized by one number.  This is because conventional 

superconductors have an isotropic superconducting gap that is the same magnitude and the same phase 

(excepting current flow) everywhere.  This is not necessarily true for unconventional superconductors. 



In a superconductor the Cooper pairs can either be singlet (usually they are this S=0) or triplet (S=1).  

The antisymmetric singlet state must be accompanied by a symmetric (even) orbital component; 

conversely, an triplet pairing in the spin channel would correspond to an odd orbital component.  Some 

examples: 

Singlet cooper pair, s-wave (ℓ = 0) orbital component; conventional superconductors are in this 

category.   

Triplet Cooper pair, p-wave (ℓ = 1);  𝑆𝑟2𝑅𝑢𝑂4 was once believed to be in this category, but the jury is 

out now 

Singlet Cooper pair, d-wave (ℓ = 2); cuprate high temperature superconductors are famously in this 

category 

Triplet Cooper pair, f-wave (ℓ = 3); heavy fermion superconductor 𝑈𝑃𝑡3 is believed to be a triplet f-

wave superconductor 

Technically, BCS theory can accommodate other pairing symmetries other than s-wave, but in practice, 

there are no known non-s-wave superconductors that everyone agrees are BCS.  As such, non-s-wave 

pairing symmetry is often sufficient condition to be ‘unconventional’.  The word “pairing symmetry” 

sometimes means s-,p-,d-wave, etc or it can refer to a specific sub-category, like 𝑑𝑥2−𝑦2 

A momentum space representation of 𝑑𝑥2−𝑦2 superconductivity, as found in cuprates, is shown here: 

Here, the big circle represents the Fermi surface.  The radial 

distance from the circle to the edge of the clover leaf at 

each point represents the magnitude of the 

superconducting gap at each point, and the magnitude of 

the gap is different in different directions.  The colors 

represent the phase of the superconducting order 

parameter.  Lets say that the blue is 𝜃𝑏 = 𝜃1 and the cyan is 

𝜃𝑐 = 𝜃1 + 𝜋 

Note that this phase angle appears in a complex 

exponential which can be expressed in terms of sines and 

cosines 

𝜓𝑐 = 𝜓0𝑒𝑖(𝜃1+𝜋) = 𝜓0[cos(𝜃1 + 𝜋) + 𝑖 sin(𝜃1 + 𝜋)]

= 𝜓0[− cos(𝜃1) − 𝑖 sin(𝜃1)] = −𝜓0𝑒𝑖𝜃1 

= −𝜓𝑏 

The point on the Fermi surface where you go from cyan to blue is called the “node”.  At this point, the 

magnitude of the superconducting gap is identically zero, because it needs to switch sign (see equation 

above).  The antinode is where the superconducting gap is maximum.  If this maximum magnitude of the 

superconducting gap is Δ0 and the center of the Fermi surface is at the corner of a 2D square BZ (𝜋, 𝜋), 

the superconducting gap (to lowest order) can be expressed as: Δ(𝒌) = Δ(𝑘𝑥 , 𝑘𝑦) ≈
1

2
(cos(𝑘𝑥) −

cos(𝑘𝑦)) where 𝑘𝑥 𝑎𝑛𝑑 𝑘𝑦 are different crystal momenta along the Fermi surface.  This is just one 

among many examples of how a superconducting gap can vary in momentum space. 



Most experiments are only sensitive to the magnitude of the superconducting gap.  For example, heat 

capacity at low temperature will still tell you about the gap magnitude but for a 𝑑𝑥2−𝑦2 gap ( or any 

superconducting gap with nodes), there will be zero energy excitations, such that the temperature 

dependence will not be exponential; different types of nodes in the gap structure will have different 

thermodynamic signatures.  Angle-resolved photoemission spectroscopy can measure the magnitude of 

the superconducting gap as a function of momentum directly, as long as the Tc is not too low and the 

gap is not too small. 

One experiment that can measure phases is specially constructed SQUID devices.  A sketch is shown 

below, from the following review article: 

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.67.515  

Note that d-wave pairing symmetry is not necessarily 

synonymous with nodes in the gap structure; it also depends 

on what the Fermi surface looks like and where they are in 

the Brillouin zone.  The image below contrasts s-wave (for 

simplicity, say it always had isotropic gap) with two types of 

d-wave symmetries; two types of Fermiologies are included: 

one large Fermi surface and 4 small Fermi surfaces. 

If the small Fermi surface is fully inside a sector with one 

phase (i.e. fully inside blue or fully inside cyan), it will not 

show a node, even if d-wave.  Additionally, different types of 

d-wave symmetries can put nodes in different places in 

momentum space (and different orientations relative to 

crystallographic axes. 

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.67.515


 

Below is a history of superconductivity graph, often shown at the start of talks.  I will say a few words 

about most of the characters on there.  Image source: “By PJRay - Own work, CC BY-SA 4.0, 

https://commons.wikimedia.org/w/index.php?curid=46193149” 



 

• Green circles: conventional superconductors.  Mechanism explained by BCS theory.  Note that 

hydrogen-containing versions can have very high Tc at high pressure, demonstrating that BCS is 

not synonymous with low Tc. 

• Green stars: Heavy fermions, called such because electrons behave as if they have large 

effective mass in normal state.  Superconductivity often found proximate to 

antiferromagnetism, prompting theories involving magnetic-fluctuation mediated pairing. 

However, pairing mechanism is still not resolved. 

• Blue diamonds: cuprate high temperature superconductors.  Mechanism not resolved.  

Superconductivity found proximate to various phases: antiferromagnetic insulator, CDW 

correlations, mystery phase called pseudogap.  Only compounds to superconduct above liquid 

nitrogen temperature. 

• Purple and pink triangles: various types of carbon-based superconductors 

• Orange squares: iron-based high temperature superconductors; mechanism not resolved.  

Superconductivity found proximate to magnetic phases; nematic order/correlations thought to 

be important.  A lot of research (at the time of writing these notes) focuses on potential 

instances of topological superconductivity.  Highest Tc data point has not been reproduced. 

• Cyan star: nickelates (this graph has not been updated; higher Tc has been seen under 

pressure); long sought after analog of cuprates, where SC shows up in layered transition metal 

oxide. 


